IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v36y2014icp231-241.html
   My bibliography  Save this article

Passenger travel CO2 emissions in US urbanized areas: Multi-sourced data, impacts of influencing factors, and policy implications

Author

Listed:
  • Mishalani, Rabi G.
  • Goel, Prem K.
  • Landgraf, Andrew J.
  • Westra, Ashley M.
  • Zhou, Dunke

Abstract

Policies that encourage reduced vehicle-miles traveled and the use of more efficient transportation modes are typically considered as means to reduce greenhouse gas (GHG) emissions. In support of motivating, developing, and evaluating such policies, the impacts various transportation infrastructure and use, population density, and policy variables have on passenger travel related carbon dioxide (CO2) – the primary GHG – emissions are assessed and resulting policy implications are discussed. A methodology for integrating data from multiple sources in a consistent manner is developed and implemented, producing a rich dataset consisting of 146 of the largest urbanized areas in the US. The magnitudes of the impacts that changes in certain variables have on CO2 emissions in select urbanized areas are quantified. The results indicate that the variable used as a proxy for the presence of policies aimed at addressing environmental concerns and travelers’ attitudes and behaviors towards such concerns influences the impacts changes in transportation characteristics and population density have on CO2 emissions. Depending on these effects, the impacts of changes in average private vehicle occupancy and freeway lane-miles per capita are found to be the largest. In addition, changes in average travel time have a substantial impact on CO2 emissions. While the explanatory effect of transit share is found to be statistically significant, the magnitudes of the impacts of changes in this variable are less appreciable in comparison to those of the above variables, which is understandable in light of the fairly low values of transit share and transit service utilization across most US urbanized areas. Furthermore, the impacts of changes in population density are the smallest among all the variables that are found to have statistically significant explanatory effects. However, this finding does not undermine the role land-use policies could play as increased density could have a direct or an indirect effect on reduced travel times and increased transit use, which in turn contribute to reduced CO2 emissions. In addition to quantifying the impacts, several policy implications stemming from the findings are identified and discussed. Notably, the relative magnitudes of the impacts corresponding to the different variables are found to vary appreciably across urbanized areas, implying that policies aimed at reducing CO2 emissions should focus on different sets of variables depending on the overall characteristics of the specific urbanized area and any existing policies aimed at reducing CO2 emissions.

Suggested Citation

  • Mishalani, Rabi G. & Goel, Prem K. & Landgraf, Andrew J. & Westra, Ashley M. & Zhou, Dunke, 2014. "Passenger travel CO2 emissions in US urbanized areas: Multi-sourced data, impacts of influencing factors, and policy implications," Transport Policy, Elsevier, vol. 36(C), pages 231-241.
  • Handle: RePEc:eee:trapol:v:36:y:2014:i:c:p:231-241
    DOI: 10.1016/j.tranpol.2014.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X14001450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2014.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parshall, Lily & Gurney, Kevin & Hammer, Stephen A. & Mendoza, Daniel & Zhou, Yuyu & Geethakumar, Sarath, 2010. "Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States," Energy Policy, Elsevier, vol. 38(9), pages 4765-4782, September.
    2. Daniel J. Graham & Stephen Glaister, 2002. "The Demand for Automobile Fuel: A Survey of Elasticities," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 1-25, January.
    3. Hankey, Steve & Marshall, Julian D., 2010. "Impacts of urban form on future US passenger-vehicle greenhouse gas emissions," Energy Policy, Elsevier, vol. 38(9), pages 4880-4887, September.
    4. David Bonilla & Timothy Foxon, 2009. "Demand for New Car Fuel Economy in the UK, 1970-2005," Journal of Transport Economics and Policy, University of Bath, vol. 43(1), pages 55-83, January.
    5. John Holtzclaw & Robert Clear & Hank Dittmar & David Goldstein & Peter Haas, 2002. "Location Efficiency: Neighborhood and Socio-Economic Characteristics Determine Auto Ownership and Use - Studies in Chicago, Los Angeles and San Francisco," Transportation Planning and Technology, Taylor & Francis Journals, vol. 25(1), pages 1-27, January.
    6. Karathodorou, Niovi & Graham, Daniel J. & Noland, Robert B., 2010. "Estimating the effect of urban density on fuel demand," Energy Economics, Elsevier, vol. 32(1), pages 86-92, January.
    7. Antonio M. Bento & Maureen L. Cropper & Ahmed Mushfiq Mobarak & Katja Vinha, 2005. "The Effects of Urban Spatial Structure on Travel Demand in the United States," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 466-478, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Yu Sang & Lee, Yong Joo & Choi, Sung Sup Brian, 2017. "Is there more traffic congestion in larger cities? -Scaling analysis of the 101 largest U.S. urban centers-," Transport Policy, Elsevier, vol. 59(C), pages 54-63.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    2. Shoki Kosai & Muku Yuasa & Eiji Yamasue, 2020. "Chronological Transition of Relationship between Intracity Lifecycle Transport Energy Efficiency and Population Density," Energies, MDPI, vol. 13(8), pages 1-15, April.
    3. Su, Qing, 2011. "The effect of population density, road network density, and congestion on household gasoline consumption in U.S. urban areas," Energy Economics, Elsevier, vol. 33(3), pages 445-452, May.
    4. Clark, Thomas A., 2013. "Metropolitan density, energy efficiency and carbon emissions: Multi-attribute tradeoffs and their policy implications," Energy Policy, Elsevier, vol. 53(C), pages 413-428.
    5. Morikawa, Masayuki, 2012. "Population density and efficiency in energy consumption: An empirical analysis of service establishments," Energy Economics, Elsevier, vol. 34(5), pages 1617-1622.
    6. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    7. Lawrence Goulder, 2007. "Distributional and Efficiency Impacts of Increased U.S. Gasoline Taxes," Discussion Papers 07-009, Stanford Institute for Economic Policy Research.
    8. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    9. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    10. Kotval-K, Zeenat & Vojnovic, Igor, 2016. "A socio-ecological exploration into urban form: The environmental costs of travel," Ecological Economics, Elsevier, vol. 128(C), pages 87-98.
    11. Akihiro Otsuka, 2018. "Regional Determinants of Energy Efficiency: Residential Energy Demand in Japan," Energies, MDPI, vol. 11(6), pages 1-14, June.
    12. Law, Teik Hua & Hamid, Hussain & Goh, Chia Ning, 2015. "The motorcycle to passenger car ownership ratio and economic growth: A cross-country analysis," Journal of Transport Geography, Elsevier, vol. 46(C), pages 122-128.
    13. Dong, Hongwei, 2021. "Evaluating the impacts of transit-oriented developments (TODs) on household transportation expenditures in California," Journal of Transport Geography, Elsevier, vol. 90(C).
    14. Akihiro Otsuka & Mika Goto & Toshiyuki Sueyoshi, 2014. "Energy efficiency and agglomeration economies: the case of Japanese manufacturing industries," Regional Science Policy & Practice, Wiley Blackwell, vol. 6(2), pages 195-212, June.
    15. Tovar, Miguel A., 2011. "An integral evaluation of dieselisation policies for households' cars," Energy Policy, Elsevier, vol. 39(9), pages 5228-5242, September.
    16. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    17. Yu Sang Chang & Sung Jun Jo & Yoo-Taek Lee & Yoonji Lee, 2021. "Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    18. Bonilla, David & Schmitz, Klaus E. & Akisawa, Atsushi, 2012. "Demand for mini cars and large cars; decay effects, and gasoline demand in Japan," Energy Policy, Elsevier, vol. 50(C), pages 217-227.
    19. Broadstock, David C. & Hunt, Lester C., 2010. "Quantifying the impact of exogenous non-economic factors on UK transport oil demand," Energy Policy, Elsevier, vol. 38(3), pages 1559-1565, March.
    20. Soltani, Ali, 2017. "Social and urban form determinants of vehicle ownership; evidence from a developing country," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 90-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:36:y:2014:i:c:p:231-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.