IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v155y2024icp58-78.html
   My bibliography  Save this article

Charging infrastructure assessment for shared autonomous electric vehicles in 374 small and medium-sized urban areas: An agent-based simulation approach

Author

Listed:
  • Zhang, Zihe
  • Liu, Jun
  • Bastidas, Javier Pena
  • Jones, Steven

Abstract

This research examines the use of Shared Autonomous Electric Vehicles (SAEVs) in 374 U.S. small and medium-sized urban areas, focusing on fleet and infrastructure needs through agent-based simulations. It assesses metrics such as fleet size, trips per vehicle, and charging station requirements, considering two charger types: Level 2 and Level 3. The findings show significant spatial differences in SAEV operations and infrastructure across these cities. Statistical analysis links these variations to regional road networks and travel patterns. The study finds Level 3 chargers more efficient, requiring fewer stations and enabling more trips per vehicle compared to Level 2 chargers. Furthermore, Level 3 chargers exhibit a greater number of trips per SAEV and a higher ratio of vehicles to charging stations. These findings highlight the significance of considering charging infrastructure characteristics to optimize SAEV fleet performance and promote sustainable transportation systems in urban areas. This study significantly contributes by identifying the spatial variation and correlates of the SAEVs' operational and charging infrastructural performance. Policymakers, urban planners, and transportation service providers can leverage these insights to design and implement effective charging infrastructure for SAEV fleets, thereby advancing the transition to cleaner and more efficient mobility solutions.

Suggested Citation

  • Zhang, Zihe & Liu, Jun & Bastidas, Javier Pena & Jones, Steven, 2024. "Charging infrastructure assessment for shared autonomous electric vehicles in 374 small and medium-sized urban areas: An agent-based simulation approach," Transport Policy, Elsevier, vol. 155(C), pages 58-78.
  • Handle: RePEc:eee:trapol:v:155:y:2024:i:c:p:58-78
    DOI: 10.1016/j.tranpol.2024.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X2400180X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    2. Wong, Yale Z. & Hensher, David A. & Mulley, Corinne, 2020. "Mobility as a service (MaaS): Charting a future context," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 5-19.
    3. Li, Yanning & Li, Xinwei & Jenn, Alan, 2022. "Evaluating the emission benefits of shared autonomous electric vehicle fleets: A case study in California," Applied Energy, Elsevier, vol. 323(C).
    4. Shen, Yu & Zhang, Hongmou & Zhao, Jinhua, 2018. "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 125-136.
    5. Baichuan Mo & Zhejing Cao & Hongmou Zhang & Yu Shen & Jinhua Zhao, 2020. "Competition between shared autonomous vehicles and public transit: A case study in Singapore," Papers 2001.03197, arXiv.org, revised Feb 2021.
    6. Jun Liu & Kara M. Kockelman & Patrick M. Boesch & Francesco Ciari, 2017. "Tracking a system of shared autonomous vehicles across the Austin, Texas network using agent-based simulation," Transportation, Springer, vol. 44(6), pages 1261-1278, November.
    7. Loeb, Benjamin & Kockelman, Kara M., 2019. "Fleet performance and cost evaluation of a shared autonomous electric vehicle (SAEV) fleet: A case study for Austin, Texas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 374-385.
    8. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    9. Chen, T. Donna & Kockelman, Kara M. & Hanna, Josiah P., 2016. "Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 243-254.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    2. Peer, Stefanie & Müller, Johannes & Naqvi, Asjad & Straub, Markus, 2024. "Introducing shared, electric, autonomous vehicles (SAEVs) in sub-urban zones: Simulating the case of Vienna," Transport Policy, Elsevier, vol. 147(C), pages 232-243.
    3. Mo, Dong & Chen, Xiqun (Michael) & Zhang, Junlin, 2022. "Modeling and Managing Mixed On-Demand Ride Services of Human-Driven Vehicles and Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 80-119.
    4. Levin, Michael W., 2022. "A general maximum-stability dispatch policy for shared autonomous vehicle dispatch with an analytical characterization of the maximum throughput," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 258-280.
    5. Sehyun Tak & Soomin Woo & Sungjin Park & Sunghoon Kim, 2021. "The City-Wide Impacts of the Interactions between Shared Autonomous Vehicle-Based Mobility Services and the Public Transportation System," Sustainability, MDPI, vol. 13(12), pages 1-29, June.
    6. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    7. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    8. Yefang Zhou & Hitomi Sato & Toshiyuki Yamamoto, 2021. "Shared Low-Speed Autonomous Vehicle System for Suburban Residential Areas," Sustainability, MDPI, vol. 13(15), pages 1-15, August.
    9. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.
    10. Kang, Di & Levin, Michael W., 2021. "Maximum-stability dispatch policy for shared autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 132-151.
    11. Cui, Hongjun & Yang, Yizhe & Zhu, Minqing & Ma, Xinwei & Chen, Xiuyong & Qie, Binghui, 2023. "The scheduling methods with different demand priorities for shared autonomous vehicle system in hybrid demands mode considering dynamic travel time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    12. Markov, Iliya & Guglielmetti, Rafael & Laumanns, Marco & Fernández-Antolín, Anna & de Souza, Ravin, 2021. "Simulation-based design and analysis of on-demand mobility services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 170-205.
    13. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2022. "Dynamic ride-sharing impacts of greater trip demand and aggregation at stops in shared autonomous vehicle systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 114-125.
    14. Li, Qing & Liao, Feixiong, 2020. "Incorporating vehicle self-relocations and traveler activity chains in a bi-level model of optimal deployment of shared autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 151-175.
    15. Cokyasar, Taner & Larson, Jeffrey, 2020. "Optimal assignment for the single-household shared autonomous vehicle problem," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 98-115.
    16. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2021. "Impacts of shared automated vehicles on airport access and operations, with opportunities for revenue recovery: Case Study of Austin, Texas," Research in Transportation Economics, Elsevier, vol. 90(C).
    17. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    18. Liu, Zhiyong & Li, Ruimin & Dai, Jingchen, 2022. "Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on data-driven modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 206-226.
    19. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.
    20. Zwick, Felix & Kuehnel, Nico & Hörl, Sebastian, 2022. "Shifts in perspective: Operational aspects in (non-)autonomous ride-pooling simulations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 300-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:155:y:2024:i:c:p:58-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.