IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v129y2022icp51-65.html
   My bibliography  Save this article

Examining the varying influences of built environment on bike-sharing commuting: Empirical evidence from Shanghai

Author

Listed:
  • Bi, Hui
  • Li, Aoyong
  • Hua, Mingzhuang
  • Zhu, He
  • Ye, Zhirui

Abstract

Commute behaviors, as the primary part of urban mobility, remains largely underexplored, especially for bike-sharing users. Recent development in data availability open up new possibilities to delve into bike-sharing commuting over long-term periods on a large scale. This study proposes a methodological framework that enables a logical identification of bike-sharing commuting activities and a comprehensive examination of urban built environment effects on shaping commuting patterns. To this end, a series of data mining methods are developed in support of the identification of regular bike-sharing commuting, and the concepts of home-work balance and mobility trend are proposed to describe underlying commuting patterns. The XGBoost model and Necessary Condition Analysis (NCA) method are then adopted respectively to test the sufficiency and necessity of built environment on commuting patterns. The results confirm the massive existence of individual-level bike-sharing commuting activities and the pivotal role of bike-sharing in urban commuting. Also, the spatial distributions of home-work balance and mobility trend driven by job-housing separation show different clustering patterns. Besides, the synergy of sufficiency analysis and necessity analysis investigates the complex interplay of built environment-commuting patterns. This critical analysis of bike-sharing commute provides insights into sustainable transit planning and urban design.

Suggested Citation

  • Bi, Hui & Li, Aoyong & Hua, Mingzhuang & Zhu, He & Ye, Zhirui, 2022. "Examining the varying influences of built environment on bike-sharing commuting: Empirical evidence from Shanghai," Transport Policy, Elsevier, vol. 129(C), pages 51-65.
  • Handle: RePEc:eee:trapol:v:129:y:2022:i:c:p:51-65
    DOI: 10.1016/j.tranpol.2022.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X2200289X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2022.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Chuan & Cao, Xinyu & Wang, Yunpeng, 2018. "Synergistic effects of the built environment and commuting programs on commute mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 104-118.
    2. Faghih-Imani, Ahmadreza & Hampshire, Robert & Marla, Lavanya & Eluru, Naveen, 2017. "An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 177-191.
    3. Redmond, Lothlorien S. & Mokhtarian, Patricia L., 2001. "The Positive Utility of the Commute: Modeling Ideal Commute Time and Relative Desired Commute Amount," University of California Transportation Center, Working Papers qt4mc291p2, University of California Transportation Center.
    4. Gao, Kun & Yang, Ying & Li, Aoyong & Li, Junhong & Yu, Bo, 2021. "Quantifying economic benefits from free-floating bike-sharing systems: A trip-level inference approach and city-scale analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 89-103.
    5. Li, Tiebei & Dodson, Jago & Goldie, Xavier, 2021. "Urban structure, commuting burden, and employment status of labour forces in an Australian city," Journal of Transport Geography, Elsevier, vol. 93(C).
    6. Zhou, Jiangping & Murphy, Enda & Long, Ying, 2014. "Commuting efficiency in the Beijing metropolitan area: an exploration combining smartcard and travel survey data," Journal of Transport Geography, Elsevier, vol. 41(C), pages 175-183.
    7. De Vos, Jonas & Cheng, Long & Kamruzzaman, Md. & Witlox, Frank, 2021. "The indirect effect of the built environment on travel mode choice: A focus on recent movers," Journal of Transport Geography, Elsevier, vol. 91(C).
    8. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    9. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    10. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    11. Lothlorien Redmond & Patricia Mokhtarian, 2001. "The positive utility of the commute: modeling ideal commute time and relative desired commute amount," Transportation, Springer, vol. 28(2), pages 179-205, May.
    12. Lee, Hasik & Park, Ho-Chul & Kho, Seung-Young & Kim, Dong-Kyu, 2019. "Assessing transit competitiveness in Seoul considering actual transit travel times based on smart card data," Journal of Transport Geography, Elsevier, vol. 80(C).
    13. Li, Wenxiang & Chen, Shawen & Dong, Jieshuang & Wu, Jingxian, 2021. "Exploring the spatial variations of transfer distances between dockless bike-sharing systems and metros," Journal of Transport Geography, Elsevier, vol. 92(C).
    14. Deboosere, Robbin & El-Geneidy, Ahmed, 2018. "Evaluating equity and accessibility to jobs by public transport across Canada," Journal of Transport Geography, Elsevier, vol. 73(C), pages 54-63.
    15. Zhang, Mengzhu & He, Shenjing & Zhao, Pengjun, 2018. "Revisiting inequalities in the commuting burden: Institutional constraints and job-housing relationships in Beijing," Journal of Transport Geography, Elsevier, vol. 71(C), pages 58-71.
    16. Kou, Zhaoyu & Cai, Hua, 2019. "Understanding bike sharing travel patterns: An analysis of trip data from eight cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 785-797.
    17. Liu, Jixiang & Wang, Bo & Xiao, Longzhu, 2021. "Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach," Journal of Transport Geography, Elsevier, vol. 92(C).
    18. Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
    19. Veronique Acker & Frank Witlox, 2011. "Commuting trips within tours: how is commuting related to land use?," Transportation, Springer, vol. 38(3), pages 465-486, May.
    20. Davidson, Joshua H. & Ryerson, Megan S., 2021. "Modeling regional disparity and the reverse commute," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 124-139.
    21. Jinhyun Hong & Qing Shen & Lei Zhang, 2014. "How do built-environment factors affect travel behavior? A spatial analysis at different geographic scales," Transportation, Springer, vol. 41(3), pages 419-440, May.
    22. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    23. Li, Haiying & Li, Xian & Xu, Xinyue & Liu, Jun & Ran, Bin, 2018. "Modeling departure time choice of metro passengers with a smart corrected mixed logit model - A case study in Beijing," Transport Policy, Elsevier, vol. 69(C), pages 106-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bi, Hui & Gao, Hui & Li, Aoyong & Ye, Zhirui, 2024. "Investigation on the joint travel behavior in bike sharing systems during the COVID-19 pandemic: Insights from New York City," Journal of Transport Geography, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laviolette, Jérôme & Morency, Catherine & Waygood, E.O.D., 2022. "A kilometer or a mile? Does buffer size matter when it comes to car ownership?," Journal of Transport Geography, Elsevier, vol. 104(C).
    2. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
    3. Liu, Jixiang & Wang, Bo & Xiao, Longzhu, 2021. "Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach," Journal of Transport Geography, Elsevier, vol. 92(C).
    4. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    5. Hui Bi & Zhirui Ye & He Zhu, 2024. "Mining bike sharing trip record data: a closer examination of the operating performance at station level," Transportation, Springer, vol. 51(3), pages 1015-1041, June.
    6. Yang, Linchuan & Ao, Yibin & Ke, Jintao & Lu, Yi & Liang, Yuan, 2021. "To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults," Journal of Transport Geography, Elsevier, vol. 94(C).
    7. Liu, Jixiang & Xiao, Longzhu, 2023. "Non-linear relationships between built environment and commuting duration of migrants and locals," Journal of Transport Geography, Elsevier, vol. 106(C).
    8. Sun, Shan & Guo, Liang & Yang, Shuo & Cao, Jason, 2024. "Exploring the contributions of Ebike ownership, transit access, and the built environment to car ownership in a developing city," Journal of Transport Geography, Elsevier, vol. 116(C).
    9. Xiaoquan Wang & Weifeng Wang & Chaoying Yin, 2023. "Exploring the Relationships between Multilevel Built Environments and Commute Durations in Dual-Earner Households: Does Gender Matter?," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    10. Yin, Chun & Cao, Jason & Sun, Bindong & Liu, Jiahang, 2023. "Exploring built environment correlates of walking for different purposes: Evidence for substitution," Journal of Transport Geography, Elsevier, vol. 106(C).
    11. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.
    12. Tao, Sui & Cheng, Long & He, Sylvia & Witlox, Frank, 2023. "Examining the non-linear effects of transit accessibility on daily trip duration: A focus on the low-income population," Journal of Transport Geography, Elsevier, vol. 109(C).
    13. Yang, Hongtai & Zheng, Rong & Li, Xuan & Huo, Jinghai & Yang, Linchuan & Zhu, Tong, 2022. "Nonlinear and threshold effects of the built environment on e-scooter sharing ridership," Journal of Transport Geography, Elsevier, vol. 104(C).
    14. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    15. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    16. Yang, Jiawen & Cao, Jason & Zhou, Yufei, 2021. "Elaborating non-linear associations and synergies of subway access and land uses with urban vitality in Shenzhen," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 74-88.
    17. Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
    18. Lv, Huitao & Li, Haojie & Chen, Yanlu & Feng, Tao, 2023. "An origin-destination level analysis on the competitiveness of bike-sharing to underground using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 113(C).
    19. Ross-Perez, Antonio & Walton, Neil & Pinto, Nuno, 2022. "Identifying trip purpose from a dockless bike-sharing system in Manchester," Journal of Transport Geography, Elsevier, vol. 99(C).
    20. Keliang Liu & Jian Chen & Rui Li & Tao Peng & Keke Ji & Yuyue Gao, 2022. "Nonlinear Effects of Community Built Environment on Car Usage Behavior: A Machine Learning Approach," Sustainability, MDPI, vol. 14(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:129:y:2022:i:c:p:51-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.