IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v111y2021icp98-110.html
   My bibliography  Save this article

Potential of telecommuting for different employees in the Indian context beyond COVID-19 lockdown

Author

Listed:
  • Nayak, Suchismita
  • Pandit, Debapratim

Abstract

During the last decade, telecommuting has become quite popular whereas, in developing countries like India, this phenomenon is limited to a select group of employees due to various factors. The COVID-19 pandemic, the nationwide lockdown and the subsequent new normal scenario, has made the adoption of telecommuting by different type of employees indispensable thus giving us the opportunity to conduct empirical research towards understanding the factors influencing telecommuting adoption, productivity and activity-travel behaviour during telecommuting in India. The data used in this survey has been collected in two phases to capture the evolving situation of the pandemic. The analysis has been done based on revealed preference data considering three time periods i.e., before COVID-19, during COVID-19 nationwide lockdown, after the termination of the lockdown (after first wave) and for the post-COVID 19 scenario where stated preferences are considered. In the first step, telecommuting behaviour, activity-travel pattern during telecommuting and productivity is estimated based on aggregate sample data for various socio-economic groups for the period before and during COVID-19 (1. during lockdown 2. during new normal). Next, factors influencing telecommuting adoption and productivity are determined which has been used in our stated preference survey conducted in the second phase. A logistic regression model has been developed to test the association of existing telecommuting behaviour, activity-travel pattern, factors influencing productivity, socio-economic characteristics and occupation categories with future telecommuting adoption. The findings of this research can not only provide insights to urban planners and policymakers to design sustainable travel demand management strategies but can also help employers to design appropriate telecommuting strategies at the organization level which will help to attain the desired productivity levels. Our empirical analysis reveal two major findings, i.e., a large percentage of employees can achieve their desired productivity by working from home and the ‘rebound’ effect as identified in literature seems to have little impact in the Indian context. The novelty of this research lies in the comprehension of the adoption process, and the behavioural analysis including adoption, productivity, activity, and travel of telecommuters in the context of a developing country for the first time.

Suggested Citation

  • Nayak, Suchismita & Pandit, Debapratim, 2021. "Potential of telecommuting for different employees in the Indian context beyond COVID-19 lockdown," Transport Policy, Elsevier, vol. 111(C), pages 98-110.
  • Handle: RePEc:eee:trapol:v:111:y:2021:i:c:p:98-110
    DOI: 10.1016/j.tranpol.2021.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X21002110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2021.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mannering, Jill S. & Mokhtarian, Patricia L., 1995. "Modeling the Choice of Telecommuting Frequency in California: An Exploratory Analysis," University of California Transportation Center, Working Papers qt08s817dr, University of California Transportation Center.
    2. Joanne Pratt, 2000. "Asking the right questions about telecommuting: Avoiding pitfalls in surveying homebased work," Transportation, Springer, vol. 27(1), pages 99-116, February.
    3. Crowley, Frank & Daly, Hannah & Doran, Justin & Ryan, Geraldine, 2020. "COVID-19, social distancing, remote work and transport choice," SRERC Working Paper Series SRERCWP2020-4, University College Cork (UCC), Spatial and Regional Economic Research Centre (SRERC).
    4. P L Mokhtarian & I Salomon, 1996. "Modeling the Choice of Telecommuting: 2. A Case of the Preferred Impossible Alternative," Environment and Planning A, , vol. 28(10), pages 1859-1876, October.
    5. P L Mokhtarian & I Salomon, 1996. "Modeling the Choice of Telecommuting: 3. Identifying the Choice Set and Estimating Binary Choice Models for Technology-Based Alternatives," Environment and Planning A, , vol. 28(10), pages 1877-1894, October.
    6. Mokhtarian, Patricia L & Koenig, Brett E & Henderson, Dennis K, 1995. "The Travel and Emissions Impacts of Telecommuting for the State of California Telecommuting Pilot Project," University of California Transportation Center, Working Papers qt6rw695kc, University of California Transportation Center.
    7. Beck, Matthew J. & Hensher, David A., 2020. "Insights into the impact of COVID-19 on household travel and activities in Australia – The early days of easing restrictions," Transport Policy, Elsevier, vol. 99(C), pages 95-119.
    8. Beck, Matthew J. & Hensher, David A. & Wei, Edward, 2020. "Slowly coming out of COVID-19 restrictions in Australia: Implications for working from home and commuting trips by car and public transport," Journal of Transport Geography, Elsevier, vol. 88(C).
    9. Pengyu Zhu, 2012. "Are telecommuting and personal travel complements or substitutes?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(2), pages 619-639, April.
    10. Palvinder Singh & Rajesh Paleti & Syndney Jenkins & Chandra Bhat, 2013. "On modeling telecommuting behavior: option, choice, and frequency," Transportation, Springer, vol. 40(2), pages 373-396, February.
    11. Sangho Choo & Patricia Mokhtarian & Ilan Salomon, 2005. "Does telecommuting reduce vehicle-miles traveled? An aggregate time series analysis for the U.S," Transportation, Springer, vol. 32(1), pages 37-64, January.
    12. Zhang, Junyi & Hayashi, Yoshitsugu & Frank, Lawrence D., 2021. "COVID-19 and transport: Findings from a world-wide expert survey," Transport Policy, Elsevier, vol. 103(C), pages 68-85.
    13. Borkowski, Przemysław & Jażdżewska-Gutta, Magdalena & Szmelter-Jarosz, Agnieszka, 2021. "Lockdowned: Everyday mobility changes in response to COVID-19," Journal of Transport Geography, Elsevier, vol. 90(C).
    14. Crowley, Frank & Doran, Justin, 2020. "Covid-19, occupational social distancing and remote working potential in Ireland," SRERC Working Paper Series SRERCWP2020-1, University College Cork (UCC), Spatial and Regional Economic Research Centre (SRERC).
    15. Varma, Krishna & Ho, Chaang-Iuan & Stanek, David & Mokhtarian, Patricia, 1998. "Duration and Frequency of Telecenter Use: Once a Telecommuter, Always a Telecommuter?," Institute of Transportation Studies, Working Paper Series qt61t9j2vb, Institute of Transportation Studies, UC Davis.
    16. Mokhtarian, Patricia & Varma, Krishna, 1998. "The Trade-Off Between Trips and Distance Traveled in Analyzing the Emissions Impacts of Center-Based Telecommuting," Institute of Transportation Studies, Working Paper Series qt43b756qg, Institute of Transportation Studies, UC Davis.
    17. Haddad, Hebba & Lyons, Glenn & Chatterjee, Kiron, 2009. "An examination of determinants influencing the desire for and frequency of part-day and whole-day homeworking," Journal of Transport Geography, Elsevier, vol. 17(2), pages 124-133.
    18. Andrea F. Glogger & Thomas W. Zängler & Georg Karg, 2008. "The Impact of Telecommuting on Households’ Travel Behaviour, Expenditures and Emissions," Advances in Spatial Science, in: Chris Jensen-Butler & Birgitte Sloth & Morten Marott Larsen & Bjarne Madsen & Otto Anker Nielsen (ed.), Road Pricing, the Economy and the Environment, chapter 21, pages 411-425, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefaniec, Agnieszka & Brazil, William & Whitney, Warren & Caulfield, Brian, 2022. "Desire to work from home: Results of an Irish study," Journal of Transport Geography, Elsevier, vol. 104(C).
    2. Kogus, Ayelet & Brůhová Foltýnová, Hana & Gal-Tzur, Ayelet & Shiftan, Yuval & Vejchodská, Eliška & Shiftan, Yoram, 2022. "Will COVID-19 accelerate telecommuting? A cross-country evaluation for Israel and Czechia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 291-309.
    3. Chunjiang Li & Eva Thulin & Yanwei Chai, 2023. "Changes in Everyday Internet Use and Home Activity During and After Pandemic‐Related Lockdowns: A Case Study in Shuangjing Subdistrict, Beijing," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 114(2), pages 117-132, April.
    4. Lopes, Miguel & Dias, Ana Mélice, 2022. "Changing perspectives in times of crisis. The impact of COVID-19 on territorial accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 285-301.
    5. Takahiro Ueno, 2022. "Capturing Changes in Residential Occupant Behavior Due to Work from Home in Japan as a Consequence of the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    6. Liu, Qiyang & Liu, Zhengying & Kang, Tingting & Zhu, Le & Zhao, Pengjun, 2022. "Transport inequities through the lens of environmental racism: Rural-urban migrants under Covid-19," Transport Policy, Elsevier, vol. 122(C), pages 26-38.
    7. Tahlyan, Divyakant & Said, Maher & Mahmassani, Hani & Stathopoulos, Amanda & Walker, Joan & Shaheen, Susan, 2022. "For whom did telework not work during the Pandemic? understanding the factors impacting telework satisfaction in the US using a multiple indicator multiple cause (MIMIC) model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 387-402.
    8. Gumataw Kifle Abebe & Sylvain Charlebois & Janet Music, 2022. "Canadian Consumers’ Dining Behaviors during the COVID-19 Pandemic: Implications for Channel Decisions in the Foodservice Industry," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    9. Nicholas S. Caros & Jinhua Zhao, 2022. "Preparing urban mobility for the future of work," Papers 2201.01321, arXiv.org.
    10. Farha, Farzana Faiza & Shanto, Farabi Sarker & Khan, Fyrooz Anika & Mehrin, Maria & Khan, Asif & Tabassum, Nawshin & Nakshi, Paromita, 2024. "Exploring the changes in travel behavior between the first and second waves of the COVID-19 pandemic in Dhaka," Transport Policy, Elsevier, vol. 151(C), pages 24-35.
    11. Katherine Pawluk De-Toledo & Steve O’Hern & Sjaan Koppel, 2024. "A social-ecological model of working from home during COVID-19," Transportation, Springer, vol. 51(4), pages 1181-1208, August.
    12. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R. & Pendyala, Ram M., 2023. "On modeling future workplace location decisions: An analysis of Texas employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    13. Soria, Jason & Edward, Deirdre & Stathopoulos, Amanda, 2023. "Requiem for transit ridership? An examination of who abandoned, who will return, and who will ride more with mobility as a service," Transport Policy, Elsevier, vol. 134(C), pages 139-154.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walls, Margaret & Safirova, Elena, 2004. "A Review of the Literature on Telecommuting and Its Implications for Vehicle Travel and Emissions," Discussion Papers 10492, Resources for the Future.
    2. Jain, Taru & Currie, Graham & Aston, Laura, 2022. "COVID and working from home: Long-term impacts and psycho-social determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 52-68.
    3. Nicholas S. Caros & Jinhua Zhao, 2022. "Preparing urban mobility for the future of work," Papers 2201.01321, arXiv.org.
    4. Balbontin, Camila & Hensher, David A. & Beck, Matthew J., 2024. "The influence of working from home and underlying attitudes on the number of commuting and non-commuting trips by workers during 2020 and 2021 pre- and post-lockdown in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    5. Kogus, Ayelet & Brůhová Foltýnová, Hana & Gal-Tzur, Ayelet & Shiftan, Yuval & Vejchodská, Eliška & Shiftan, Yoram, 2022. "Will COVID-19 accelerate telecommuting? A cross-country evaluation for Israel and Czechia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 291-309.
    6. Melo, Patrícia C. & de Abreu e Silva, João, 2017. "Home telework and household commuting patterns in Great Britain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 1-24.
    7. Minh Hieu Nguyen & Jimmy Armoogum, 2021. "Perception and Preference for Home-Based Telework in the COVID-19 Era: A Gender-Based Analysis in Hanoi, Vietnam," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    8. Becky P. Y. Loo & Bo Wang, 2018. "Factors associated with home-based e-working and e-shopping in Nanjing, China," Transportation, Springer, vol. 45(2), pages 365-384, March.
    9. Beck, Matthew J. & Hensher, David A., 2022. "Working from home in Australia in 2020: Positives, negatives and the potential for future benefits to transport and society," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 271-284.
    10. Georges A. Tanguay & Ugo Lachapelle, 2019. "Potential Impacts of Telecommuting on Transportation Behaviours, Health and Hours Worked in Québec," CIRANO Project Reports 2019rp-07, CIRANO.
    11. Choo, Sangho & Mokhtarian, Patricia L. & Salomon, Ilan, 2002. "Impacts of Home-Based Telecommuting on Vehicle-Miles Traveled: A Nationwide Time Series Analysis," Institute of Transportation Studies, Working Paper Series qt2gj976x6, Institute of Transportation Studies, UC Davis.
    12. Tang, Wei & Mokhtarian, Patricia & Handy, Susan, 2008. "The Role of Neighborhood Characteristics in the Adoption and Frequency of Working at Home: Empirical Evidence from Northern California," Institute of Transportation Studies, Working Paper Series qt9rg8w9c4, Institute of Transportation Studies, UC Davis.
    13. Ugo Lachapelle & Georges A Tanguay & Léa Neumark-Gaudet, 2018. "Telecommuting and sustainable travel: Reduction of overall travel time, increases in non-motorised travel and congestion relief?," Urban Studies, Urban Studies Journal Limited, vol. 55(10), pages 2226-2244, August.
    14. Minh Hieu Nguyen, 2021. "Factors influencing home-based telework in Hanoi (Vietnam) during and after the COVID-19 era," Transportation, Springer, vol. 48(6), pages 3207-3238, December.
    15. Golob, Thomas F., 2002. "travelbehavior.com - Activity Approaches to Modeling the Effects of Information Technology on Personal Travel Behavior," University of California Transportation Center, Working Papers qt9t40s1mc, University of California Transportation Center.
    16. Kim, Suji & Lee, Sujin & Ko, Eunjeong & Jang, Kitae & Yeo, Jiho, 2021. "Changes in car and bus usage amid the COVID-19 pandemic: Relationship with land use and land price," Journal of Transport Geography, Elsevier, vol. 96(C).
    17. Ozbilen, Basar & Wang, Kailai & Akar, Gulsah, 2021. "Revisiting the impacts of virtual mobility on travel behavior: An exploration of daily travel time expenditures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 49-62.
    18. Varma, Krishna & Ho, Chaang-Iuan & Stanek, David & Mokhtarian, Patricia, 1998. "Duration and Frequency of Telecenter Use: Once a Telecommuter, Always a Telecommuter?," Institute of Transportation Studies, Working Paper Series qt61t9j2vb, Institute of Transportation Studies, UC Davis.
    19. Brown, Colby & Balepur, Prashant & Mokhtarian, Patricia L., 2005. "Communication Chains: A Methodology for Assessing the Effects of the Internet on Communication and Travel," University of California Transportation Center, Working Papers qt4cf351bc, University of California Transportation Center.
    20. Alexander, Bayarma & Ettema, Dick & Dijst, Martin, 2010. "Fragmentation of work activity as a multi-dimensional construct and its association with ICT, employment and sociodemographic characteristics," Journal of Transport Geography, Elsevier, vol. 18(1), pages 55-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:111:y:2021:i:c:p:98-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.