IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v46y2010i3p344-353.html
   My bibliography  Save this article

The integrated yard truck and yard crane scheduling problem: Benders' decomposition-based methods

Author

Listed:
  • Cao, Jin Xin
  • Lee, Der-Horng
  • Chen, Jiang Hang
  • Shi, Qixin

Abstract

This paper proposes a novel integrated model for yard truck and yard crane scheduling problems for loading operations in container terminal. The problem is formulated as a mixed-integer programming model. Due to the computational intractability, two efficient solution methods, based on Benders' decomposition, are developed for problem solution; namely, the general Benders' cut-based method and the combinatorial Benders' cut-based method. Computational experiments are conducted to evaluate the effectiveness of the proposed solution methods.

Suggested Citation

  • Cao, Jin Xin & Lee, Der-Horng & Chen, Jiang Hang & Shi, Qixin, 2010. "The integrated yard truck and yard crane scheduling problem: Benders' decomposition-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 344-353, May.
  • Handle: RePEc:eee:transe:v:46:y:2010:i:3:p:344-353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554509001203
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mancini, Simona & Gansterer, Margaretha, 2021. "Vehicle scheduling for rental-with-driver services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    2. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    3. Buddhi A. Weerasinghe & H. Niles Perera & Xiwen Bai, 2024. "Optimizing container terminal operations: a systematic review of operations research applications," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 307-341, June.
    4. Amir Gharehgozli & Debjit Roy & Suruchika Saini & Jan-Kees Ommeren, 2023. "Loading and unloading trains at the landside of container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 549-575, September.
    5. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    6. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    7. Li, Wenkai & Goh, Mark & Wu, Yong & Petering, M.E.H. & de Souza, R. & Wu, Y.C., 2012. "A continuous time model for multiple yard crane scheduling with last minute job arrivals," International Journal of Production Economics, Elsevier, vol. 136(2), pages 332-343.
    8. Li, Yiming & Sun, Zhuo & Hong, Soondo, 2024. "An exact algorithm for multiple-equipment integrated scheduling in an automated container terminal using a double-cycling strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    9. Zhang, Xiaoju & Li, Huijuan & Sheu, Jiuh-Biing, 2024. "Integrated scheduling optimization of AGV and double yard cranes in automated container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    10. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    11. Wu, Yue & Luo, Jiabin & Zhang, Dali & Dong, Ming, 2013. "An integrated programming model for storage management and vehicle scheduling at container terminals," Research in Transportation Economics, Elsevier, vol. 42(1), pages 13-27.
    12. Feder, Christophe, 2018. "Decentralization and spillovers: A new role for transportation infrastructure," Economics of Transportation, Elsevier, vol. 13(C), pages 36-47.
    13. Zhou, Chenhao & Lee, Byung Kwon & Li, Haobin, 2020. "Integrated optimization on yard crane scheduling and vehicle positioning at container yards," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    14. Zhang, Di & Chen, Feng & Mei, Ziqiao, 2023. "Optimization on joint scheduling of yard allocation and transfer manpower assignment for automobile RO-RO terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    15. Yong Wu & Wenkai Li & Matthew E. H. Petering & Mark Goh & Robert de Souza, 2015. "Scheduling Multiple Yard Cranes with Crane Interference and Safety Distance Requirement," Transportation Science, INFORMS, vol. 49(4), pages 990-1005, November.
    16. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
    17. Harry Geerlings & Robert Heij & Ron van Duin, 2018. "Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-20, December.
    18. Chagas, Guilherme O. & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2023. "Modeling and solving the waste valorization production and distribution scheduling problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 400-417.
    19. Liu, Ming & Lee, Chung-Yee & Zhang, Zizhen & Chu, Chengbin, 2016. "Bi-objective optimization for the container terminal integrated planning," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 720-749.
    20. Wei, Xiaoyang & Jia, Shuai & Meng, Qiang & Tan, Kok Choon, 2020. "Tugboat scheduling for container ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    21. Lu Zhen & Shucheng Yu & Shuaian Wang & Zhuo Sun, 2019. "Scheduling quay cranes and yard trucks for unloading operations in container ports," Annals of Operations Research, Springer, vol. 273(1), pages 455-478, February.
    22. Mancini, Simona & Ciavotta, Michele & Meloni, Carlo, 2021. "The Multiple Multidimensional Knapsack with Family-Split Penalties," European Journal of Operational Research, Elsevier, vol. 289(3), pages 987-998.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:46:y:2010:i:3:p:344-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.