IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v151y2021ics1366554521001149.html
   My bibliography  Save this article

Mixed-integer linear programming models for the paint waste management problem

Author

Listed:
  • Wang, Juyoung
  • Cevik, Mucahit
  • Amin, Saman Hassanzadeh
  • Parsaee, Amir Ali

Abstract

Hazardous wastes have significant negative impacts on environment and people, which make their management a prominent task. A general hazardous waste reverse logistics network consists of sources, collection centers, treatment centers, processing/recycling facilities, and disposal facilities. We study a reverse logistics network specifically for household hazardous wastes and examine its difference from a non-hazardous and industrial waste network. We consider multi-objective mixed-integer deterministic and stochastic mathematical models that are designed to answer the following questions: which facilities or centers should be opened, which routes should be utilized, and how much waste should be transported to each location in order to minimize the transportation cost, transportation/site risk, and to maximize household convenience for the purpose of participation increase at collection stage. Specifically, we propose an optimization framework for the management of hazardous household wastes, and consider the waste paint network in the City of Toronto, Ontario, Canada as a test bed for our analysis. Finally, we provide easy-to-interpret visualization tools for the problem, which help interpreting the model outcomes and identifying policy insights.

Suggested Citation

  • Wang, Juyoung & Cevik, Mucahit & Amin, Saman Hassanzadeh & Parsaee, Amir Ali, 2021. "Mixed-integer linear programming models for the paint waste management problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:transe:v:151:y:2021:i:c:s1366554521001149
    DOI: 10.1016/j.tre.2021.102343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521001149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nasrin Asgari & Mohsen Rajabi & Masoumeh Jamshidi & Maryam Khatami & Reza Zanjirani Farahani, 2017. "A memetic algorithm for a multi-objective obnoxious waste location-routing problem: a case study," Annals of Operations Research, Springer, vol. 250(2), pages 279-308, March.
    2. Giannikos, Ioannis, 1998. "A multiobjective programming model for locating treatment sites and routing hazardous wastes," European Journal of Operational Research, Elsevier, vol. 104(2), pages 333-342, January.
    3. Zhao, Jun & Huang, Lixia & Lee, Der-Horng & Peng, Qiyuan, 2016. "Improved approaches to the network design problem in regional hazardous waste management systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 52-75.
    4. Samanlioglu, Funda, 2013. "A multi-objective mathematical model for the industrial hazardous waste location-routing problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 332-340.
    5. Ehsan Ardjmand & Gary Weckman & Namkyu Park & Pooya Taherkhani & Manjeet Singh, 2015. "Applying genetic algorithm to a new location and routing model of hazardous materials," International Journal of Production Research, Taylor & Francis Journals, vol. 53(3), pages 916-928, February.
    6. Sheu, Jiuh-Biing & Chen, Yenming J., 2012. "Impact of government financial intervention on competition among green supply chains," International Journal of Production Economics, Elsevier, vol. 138(1), pages 201-213.
    7. Paul Berglund & Changhyun Kwon, 2014. "Robust Facility Location Problem for Hazardous Waste Transportation," Networks and Spatial Economics, Springer, vol. 14(1), pages 91-116, March.
    8. Omid Boyer & Tang Sai Hong & Ali Pedram & Rosnah Bt Mohd Yusuff & Norzima Zulkifli, 2013. "A Mathematical Model for the Industrial Hazardous Waste Location-Routing Problem," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-10, December.
    9. Hu, Tung-Lai & Sheu, Jiuh-Biing & Huang, Kuan-Hsiung, 2002. "A reverse logistics cost minimization model for the treatment of hazardous wastes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(6), pages 457-473, November.
    10. Rabbani, M. & Heidari, R. & Yazdanparast, R., 2019. "A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 272(3), pages 945-961.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    2. Jun Zhao & Lixiang Huang, 2019. "Multi-Period Network Design Problem in Regional Hazardous Waste Management Systems," IJERPH, MDPI, vol. 16(11), pages 1-27, June.
    3. Rabbani, M. & Heidari, R. & Yazdanparast, R., 2019. "A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 272(3), pages 945-961.
    4. Yan Sun & Maoxiang Lang & Danzhu Wang, 2016. "Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints," IJERPH, MDPI, vol. 13(8), pages 1-31, July.
    5. Misagh Rahbari & Alireza Arshadi Khamseh & Yaser Sadati-Keneti & Mohammad Javad Jafari, 2022. "A risk-based green location-inventory-routing problem for hazardous materials: NSGA II, MOSA, and multi-objective black widow optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2804-2840, February.
    6. Hao Yu & Wei Deng Solvang, 2016. "An Improved Multi-Objective Programming with Augmented ε -Constraint Method for Hazardous Waste Location-Routing Problems," IJERPH, MDPI, vol. 13(6), pages 1-21, May.
    7. Yan Sun & Xinya Li & Xia Liang & Cevin Zhang, 2019. "A Bi-Objective Fuzzy Credibilistic Chance-Constrained Programming Approach for the Hazardous Materials Road-Rail Multimodal Routing Problem under Uncertainty and Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-27, May.
    8. Ghalehkhondabi, Iman & Maihami, Reza & Ahmadi, Ehsan, 2020. "Optimal pricing and environmental improvement for a hazardous waste disposal supply chain with emission penalties," Utilities Policy, Elsevier, vol. 62(C).
    9. Wu, Weitiao & Ma, Jian & Liu, Ronghui & Jin, Wenzhou, 2022. "Multi-class hazmat distribution network design with inventory and superimposed risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    10. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    11. Nasrin Asgari & Mohsen Rajabi & Masoumeh Jamshidi & Maryam Khatami & Reza Zanjirani Farahani, 2017. "A memetic algorithm for a multi-objective obnoxious waste location-routing problem: a case study," Annals of Operations Research, Springer, vol. 250(2), pages 279-308, March.
    12. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2017. "Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 792-809.
    13. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
    14. Court, Christa D. & Munday, Max & Roberts, Annette & Turner, Karen, 2015. "Can hazardous waste supply chain ‘hotspots’ be identified using an input–output framework?," European Journal of Operational Research, Elsevier, vol. 241(1), pages 177-187.
    15. H. Asefi & S. Lim & M. Maghrebi & S. Shahparvari, 2019. "Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management," Annals of Operations Research, Springer, vol. 273(1), pages 75-110, February.
    16. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    17. Haoqing Wang & Wen Yi & Yannick Liu, 2022. "Optimal Route Design for Construction Waste Transportation Systems: Mathematical Models and Solution Algorithms," Mathematics, MDPI, vol. 10(22), pages 1-13, November.
    18. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    19. Nikzamir, Mohammad & Baradaran, Vahid, 2020. "A healthcare logistic network considering stochastic emission of contamination: Bi-objective model and solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    20. Zhao, Jiahong & Ke, Ginger Y., 2017. "Incorporating inventory risks in location-routing models for explosive waste management," International Journal of Production Economics, Elsevier, vol. 193(C), pages 123-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:151:y:2021:i:c:s1366554521001149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.