IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v128y2019icp356-383.html
   My bibliography  Save this article

Sustainable manufacturing production-inventory decision of multiple factories with JIT logistics, component recovery and emission control

Author

Listed:
  • Chen, Zhixiang
  • Bidanda, Bopaya

Abstract

Based on two sustainable manufacturing strategies: resource recycling and emission reduction, this paper addresses a new production-inventory problem of multiple factories with JIT logistics, component recovery and emission control. Motivated by beer industry, we formulate this problem based on two decision mechanisms: (1) PI-CR decision mechanism–sole consideration of component recovery (component recycling) (2) PI-RE decision mechanism–joint consideration of component recycling and emission control. In the PI-RE decision mechanism, two emission control policies—carbon tax and carbon cap & trade are implemented. Numerical analysis is demonstrated to show the application of the models, and the managerial implications are put forward. Results show that emission control and resource recycling strategies have different impacts on the decision, increasing the return rate of recoverable component is an effective approach to currently reduce emissions and cost, while the cap & trade policy is more effect than the carbon tax policy in controlling emissions.

Suggested Citation

  • Chen, Zhixiang & Bidanda, Bopaya, 2019. "Sustainable manufacturing production-inventory decision of multiple factories with JIT logistics, component recovery and emission control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 356-383.
  • Handle: RePEc:eee:transe:v:128:y:2019:i:c:p:356-383
    DOI: 10.1016/j.tre.2019.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655451831189X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B.C. Giri & Christoph H. Glock, 2017. "A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6760-6778, November.
    2. Daryanto, Yosef & Wee, Hui Ming & Astanti, Ririn Diar, 2019. "Three-echelon supply chain model considering carbon emission and item deterioration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 368-383.
    3. Gregory A. DeCroix & Paul H. Zipkin, 2005. "Inventory Management for an Assembly System with Product or Component Returns," Management Science, INFORMS, vol. 51(8), pages 1250-1265, August.
    4. Saberi, Sara, 2018. "Sustainable, multiperiod supply chain network model with freight carrier through reduction in pollution stock," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 421-444.
    5. Bazan, Ehab & Jaber, Mohamad Y. & Zanoni, Simone, 2017. "Carbon emissions and energy effects on a two-level manufacturer-retailer closed-loop supply chain model with remanufacturing subject to different coordination mechanisms," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 394-408.
    6. Sheu, Jiuh-Biing & Chou, Yi-Hwa & Hu, Chun-Chia, 2005. "An integrated logistics operational model for green-supply chain management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(4), pages 287-313, July.
    7. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    8. Feng, Yan & Viswanathan, S., 2011. "A new lot-sizing heuristic for manufacturing systems with product recovery," International Journal of Production Economics, Elsevier, vol. 133(1), pages 432-438, September.
    9. Harish Krishnan & Roman Kapuscinski & David A. Butz, 2004. "Coordinating Contracts for Decentralized Supply Chains with Retailer Promotional Effort," Management Science, INFORMS, vol. 50(1), pages 48-63, January.
    10. Hammami, Ramzi & Nouira, Imen & Frein, Yannick, 2015. "Carbon emissions in a multi-echelon production-inventory model with lead time constraints," International Journal of Production Economics, Elsevier, vol. 164(C), pages 292-307.
    11. Pazoki, Mostafa & Zaccour, Georges, 2019. "A mechanism to promote product recovery and environmental performance," European Journal of Operational Research, Elsevier, vol. 274(2), pages 601-614.
    12. Chung, Chun-Jen & Wee, Hui-Ming, 2011. "Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 195-203, January.
    13. Glock, C. H. & Jaber, M. Y. & El Saadany, A., 2013. "Supply Chain Coordination with Emission Reduction Incentives," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57672, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. Konstantaras, I. & Skouri, K., 2010. "Lot sizing for a single product recovery system with variable setup numbers," European Journal of Operational Research, Elsevier, vol. 203(2), pages 326-335, June.
    15. Karl Widerquist, 2018. "The Bottom Line," Exploring the Basic Income Guarantee, in: A Critical Analysis of Basic Income Experiments for Researchers, Policymakers, and Citizens, chapter 0, pages 93-98, Palgrave Macmillan.
    16. Tapan Kumar Datta, 2017. "Effect of Green Technology Investment on a Production-Inventory System with Carbon Tax," Advances in Operations Research, Hindawi, vol. 2017, pages 1-12, December.
    17. Giri, B. C. & Glock, C. H., 2017. "A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 88878, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Sarkar, Biswajit & Ganguly, Baishakhi & Sarkar, Mitali & Pareek, Sarla, 2016. "Effect of variable transportation and carbon emission in a three-echelon supply chain model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 112-128.
    19. Bozorgi, Ali, 2016. "Multi-product inventory model for cold items with cost and emission consideration," International Journal of Production Economics, Elsevier, vol. 176(C), pages 123-142.
    20. Wang, X.J. & Choi, S.H., 2015. "Stochastic lot sizing manufacturing under the ETS system for maximisation of shareholder wealth," European Journal of Operational Research, Elsevier, vol. 246(1), pages 66-75.
    21. Cobb, Barry R., 2016. "Inventory control for returnable transport items in a closed-loop supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 53-68.
    22. Biswas, Indranil & Raj, Alok & Srivastava, Samir K., 2018. "Supply chain channel coordination with triple bottom line approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 213-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiaoyang & Wei, Xiaoya & Lin, Jun & Tian, Xin & Lev, Benjamin & Wang, Shouyang, 2021. "Supply chain management under carbon taxes: A review and bibliometric analysis," Omega, Elsevier, vol. 98(C).
    2. Jun Wang & Jingbo Yin & Rafi Ullah Khan & Siqi Wang & Tie Zheng, 2021. "A Study of Inbound Logistics Mode Based on JIT Production in Cruise Ship Construction," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    3. Wang, Zizhuo & Wang, Mingzheng & Liu, Weiwei, 2020. "To introduce competition or not to introduce competition: An analysis of corporate social responsibility investment collaboration in a two-echelon supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    4. Mostafa Parsa & Ali Shahandeh Nookabadi & Zümbül Atan & Yaser Malekian, 2022. "An optimal inventory policy for a multi-echelon closed-loop supply chain of postconsumer recycled content products," Operational Research, Springer, vol. 22(3), pages 1887-1938, July.
    5. Vitor W. B. Martins & Rosley Anholon & Osvaldo L. G. Quelhas & Walter Leal Filho, 2019. "Sustainable Practices in Logistics Systems: An Overview of Companies in Brazil," Sustainability, MDPI, vol. 11(15), pages 1-12, July.
    6. Liu, Weiwei & Kong, Nan & Wang, Mingzheng & Zhang, Lingling, 2021. "Sustainable multi-commodity capacitated facility location problem with complementarity demand functions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    7. Choi, Tsan-Ming & Chen, Yue, 2021. "Circular supply chain management with large scale group decision making in the big data era: The macro-micro model," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    8. Kaifang Fu & Zhixiang Chen & Guolin Zhou, 2022. "The Effects of Cognitive and Skill Learning on the Joint Vendor–Buyer Model with Imperfect Quality and Fuzzy Random Demand," Mathematics, MDPI, vol. 10(14), pages 1-24, July.
    9. Pan, Xiongfeng & Li, Mengna & Wang, Mengyang & Zong, Tianjiao & Song, Malin, 2020. "The effects of a Smart Logistics policy on carbon emissions in China: A difference-in-differences analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    10. Yang, Feng & Wang, Manman & Ang, Sheng, 2021. "Optimal remanufacturing decisions in supply chains considering consumers’ anticipated regret and power structures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    11. Jia-Liang Pan & Chui-Yu Chiu & Kun-Shan Wu & Chih-Te Yang & Yen-Wen Wang, 2021. "Optimal Pricing, Advertising, Production, Inventory and Investing Policies in a Multi-Stage Sustainable Supply Chain," Energies, MDPI, vol. 14(22), pages 1-20, November.
    12. Behrouz Pirouz & Natale Arcuri & Behzad Pirouz & Stefania Anna Palermo & Michele Turco & Mario Maiolo, 2020. "Development of an Assessment Method for Evaluation of Sustainable Factories," Sustainability, MDPI, vol. 12(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhitao Xu & Adel Elomri & Shaligram Pokharel & Fatih Mutlu, 2019. "The Design of Green Supply Chains under Carbon Policies: A Literature Review of Quantitative Models," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    2. Saberi, Sara, 2018. "Sustainable, multiperiod supply chain network model with freight carrier through reduction in pollution stock," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 421-444.
    3. Daryanto, Yosef & Wee, Hui Ming & Astanti, Ririn Diar, 2019. "Three-echelon supply chain model considering carbon emission and item deterioration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 368-383.
    4. Govindan, Kannan & Rajeev, A. & Padhi, Sidhartha S. & Pati, Rupesh K., 2020. "Supply chain sustainability and performance of firms: A meta-analysis of the literature," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    5. Felix T.S. Chan & Nan Li & S.H. Chung & Mozafar Saadat, 2017. "Management of sustainable manufacturing systems-a review on mathematical problems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1210-1225, February.
    6. Fang, Yuan & Yu, Yugang & Shi, Ye & Liu, Jie, 2020. "The effect of carbon tariffs on global emission control: A global supply chain model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    7. Jiangtao Hong & Chaher Alzaman & Ali Diabat & Akif Bulgak, 2019. "Sustainability dimensions and PM2.5 in supply chain logistics," Annals of Operations Research, Springer, vol. 275(2), pages 339-366, April.
    8. Zhou, Xiaoyang & Wei, Xiaoya & Lin, Jun & Tian, Xin & Lev, Benjamin & Wang, Shouyang, 2021. "Supply chain management under carbon taxes: A review and bibliometric analysis," Omega, Elsevier, vol. 98(C).
    9. Yosef Daryanto & Hui Ming Wee & Gede Agus Widyadana, 2019. "Low Carbon Supply Chain Coordination for Imperfect Quality Deteriorating Items," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    10. Yang, Huixiao & Luo, Jianwen & Wang, Haijun, 2017. "The role of revenue sharing and first-mover advantage in emission abatement with carbon tax and consumer environmental awareness," International Journal of Production Economics, Elsevier, vol. 193(C), pages 691-702.
    11. Yang, Yuxiang & Goodarzi, Shadi & Bozorgi, Ali & Fahimnia, Behnam, 2021. "Carbon cap-and-trade schemes in closed-loop supply chains: Why firms do not comply?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    12. Basim S. O. Alsaedi & Marwan H. Ahelali, 2024. "A Sustainable Supply Chain Model with Low Carbon Emissions for Deteriorating Imperfect-Quality Items under Learning Fuzzy Theory," Mathematics, MDPI, vol. 12(8), pages 1-43, April.
    13. Kumar, Patanjal & Baraiya, Rajendra & Das, Debashree & Jakhar, Suresh Kumar & Xu, Lei & Mangla, Sachin Kumar, 2021. "Social responsibility and cost-learning in dyadic supply chain coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    14. Gunasekara, Lahiru & Robb, David J. & Zhang, Abraham, 2023. "Used product acquisition, sorting and disposition for circular supply chains: Literature review and research directions," International Journal of Production Economics, Elsevier, vol. 260(C).
    15. Yang, Yuxiang & Goodarzi, Shadi & Jabbarzadeh, Armin & Fahimnia, Behnam, 2022. "In-house production and outsourcing under different emissions reduction regulations: An equilibrium decision model for global supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    16. Dharmendra Yadav & Umesh Chand & Ruchi Goel & Biswajit Sarkar, 2023. "Smart Production System with Random Imperfect Process, Partial Backordering, and Deterioration in an Inflationary Environment," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    17. M. Masanta & B. C. Giri, 2022. "A manufacturing–remanufacturing supply chain model with learning and forgetting in inspection under consignment stock agreement," Operational Research, Springer, vol. 22(4), pages 4093-4117, September.
    18. Luqing Rong & Maozeng Xu, 2022. "Impact of Altruistic Preference and Government Subsidy on the Multinational Green Supply Chain under Dynamic Tariff," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1928-1958, February.
    19. K. M. Kamna & Prerna Gautam & Chandra K. Jaggi, 0. "Sustainable inventory policy for an imperfect production system with energy usage and volume agility," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-9.
    20. Shou, Yongyi & Zhao, Xinyu & Dai, Jing & Xu, Dong, 2021. "Matching traceability and supply chain coordination: Achieving operational innovation for superior performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:128:y:2019:i:c:p:356-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.