IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v57y2010i8p718-727.html
   My bibliography  Save this article

Decomposing inventory routing problems with approximate value functions

Author

Listed:
  • Alejandro Toriello
  • George Nemhauser
  • Martin Savelsbergh

Abstract

We present a time decomposition for inventory routing problems. The methodology is based on valuing inventory with a concave piecewise linear function and then combining solutions to single‐period subproblems using dynamic programming techniques. Computational experiments show that the resulting value function accurately captures the inventory's value, and solving the multiperiod problem as a sequence of single‐period subproblems drastically decreases computational time without sacrificing solution quality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010

Suggested Citation

  • Alejandro Toriello & George Nemhauser & Martin Savelsbergh, 2010. "Decomposing inventory routing problems with approximate value functions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 718-727, December.
  • Handle: RePEc:wly:navres:v:57:y:2010:i:8:p:718-727
    DOI: 10.1002/nav.20433
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20433
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2004. "A Decomposition Approach for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 38(4), pages 488-502, November.
    3. Marielle Christiansen & Bjorn Nygreen, 1998. "A method for solving ship routing problemswith inventory constraints," Annals of Operations Research, Springer, vol. 81(0), pages 357-378, June.
    4. John O. McClain, 1974. "Dynamics of Exponential Smoothing with Trend and Seasonal Terms," Management Science, INFORMS, vol. 20(9), pages 1300-1304, May.
    5. Daniel Adelman, 2003. "Price-Directed Replenishment of Subsets: Methodology and Its Application to Inventory Routing," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 348-371, May.
    6. Alan S. Minkoff, 1993. "A Markov Decision Model and Decomposition Heuristic for Dynamic Vehicle Dispatching," Operations Research, INFORMS, vol. 41(1), pages 77-90, February.
    7. N H Moin & S Salhi, 2007. "Inventory routing problems: a logistical overview," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1185-1194, September.
    8. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    9. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    10. Luke Schenk & Diego Klabjan, 2008. "Intramarket Optimization for Express Package Carriers," Transportation Science, INFORMS, vol. 42(4), pages 530-545, November.
    11. Marielle Christiansen, 1999. "Decomposition of a Combined Inventory and Time Constrained Ship Routing Problem," Transportation Science, INFORMS, vol. 33(1), pages 3-16, February.
    12. Mike Hewitt & George L. Nemhauser & Martin W. P. Savelsbergh, 2010. "Combining Exact and Heuristic Approaches for the Capacitated Fixed-Charge Network Flow Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 314-325, May.
    13. Diego Klabjan & Daniel Adelman, 2007. "An Infinite-Dimensional Linear Programming Algorithm for Deterministic Semi-Markov Decision Processes on Borel Spaces," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 528-550, August.
    14. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    15. Marielle Christiansen & Bjørn Nygreen, 1998. "Modelling path flows for a combined ship routingand inventory management problem," Annals of Operations Research, Springer, vol. 82(0), pages 391-413, August.
    16. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Zhongyuan & Huang, George Q., 2023. "Cross-docking based factory logistics unitisation process: An approximate dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 311(1), pages 112-124.
    2. Alejandro Toriello & William B. Haskell & Michael Poremba, 2014. "A Dynamic Traveling Salesman Problem with Stochastic Arc Costs," Operations Research, INFORMS, vol. 62(5), pages 1107-1125, October.
    3. Andreas Bärmann & Alexander Martin & Hanno Schülldorf, 2017. "A Decomposition Method for Multiperiod Railway Network Expansion—With a Case Study for Germany," Transportation Science, INFORMS, vol. 51(4), pages 1102-1121, November.
    4. Onur Kaya & Dogus Ozkok, 2020. "A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions," Networks and Spatial Economics, Springer, vol. 20(3), pages 757-783, September.
    5. Chiu, Agustín & Angulo, Gustavo & Larrain, Homero, 2024. "Optimizing the long-term costs of an Inventory Routing Problem using linear relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    6. Dimitri J. Papageorgiou & Myun-Seok Cheon & George Nemhauser & Joel Sokol, 2015. "Approximate Dynamic Programming for a Class of Long-Horizon Maritime Inventory Routing Problems," Transportation Science, INFORMS, vol. 49(4), pages 870-885, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    2. Sayarshad, Hamid R. & Gao, H. Oliver, 2018. "A non-myopic dynamic inventory routing and pricing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 83-98.
    3. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    4. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    5. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    6. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.
    7. Ali Ekici & Okan Örsan Özener & Gültekin Kuyzu, 2015. "Cyclic Delivery Schedules for an Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 817-829, November.
    8. Oğuz Solyalı & Haldun Süral, 2011. "A Branch-and-Cut Algorithm Using a Strong Formulation and an A Priori Tour-Based Heuristic for an Inventory-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 335-345, August.
    9. Sonntag, Danja R. & Schrotenboer, Albert H. & Kiesmüller, Gudrun P., 2023. "Stochastic inventory routing with time-based shipment consolidation," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1186-1201.
    10. Faramroze G. Engineer & Kevin C. Furman & George L. Nemhauser & Martin W. P. Savelsbergh & Jin-Hwa Song, 2012. "A Branch-Price-and-Cut Algorithm for Single-Product Maritime Inventory Routing," Operations Research, INFORMS, vol. 60(1), pages 106-122, February.
    11. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    12. Agostinho Agra & Marielle Christiansen & Alexandrino Delgado, 2013. "Mixed Integer Formulations for a Short Sea Fuel Oil Distribution Problem," Transportation Science, INFORMS, vol. 47(1), pages 108-124, February.
    13. Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.
    14. Hadi Jahangir & Mohammad Mohammadi & Seyed Hamid Reza Pasandideh & Neda Zendehdel Nobari, 2019. "Comparing performance of genetic and discrete invasive weed optimization algorithms for solving the inventory routing problem with an incremental delivery," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2327-2353, August.
    15. Jørgen Glomvik Rakke & Henrik Andersson & Marielle Christiansen & Guy Desaulniers, 2015. "A New Formulation Based on Customer Delivery Patterns for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 384-401, May.
    16. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    17. Bertazzi, Luca & Chua, Geoffrey A. & Laganà, Demetrio & Paradiso, Rosario, 2022. "Analysis of effective sets of routes for the split-delivery periodic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 298(2), pages 463-477.
    18. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    19. Yves Crama & Mahmood Rezaei & Martin Savelsbergh & Tom Van Woensel, 2018. "Stochastic Inventory Routing for Perishable Products," Transportation Science, INFORMS, vol. 52(3), pages 526-546, June.
    20. Lars Magnus Hvattum & Arne Løkketangen & Gilbert Laporte, 2009. "Scenario Tree-Based Heuristics for Stochastic Inventory-Routing Problems," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 268-285, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:57:y:2010:i:8:p:718-727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.