IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v81y2015ip3p886-903.html
   My bibliography  Save this article

Stability of transportation networks under adaptive routing policies

Author

Listed:
  • Boyer, Sebastien
  • Blandin, Sebastien
  • Wynter, Laura

Abstract

Growing concerns regarding urban congestion, and the recent explosion of mobile devices able to provide real-time information to traffic users have motivated increasing reliance on real-time route guidance for the online management of traffic networks. However, while the theory of traffic equilibria is very well-known, fewer results exist on the stability of such equilibria, especially in the context of adaptive routing policy. In this work, we consider the problem of characterizing the stability properties of traffic equilibria in the context of online adaptive route choice induced by GPS-based decision making. We first extend the recent framework of “Markovian Traffic Equilibria” (MTE), in which users update their route choice at each intersection of the road network based on traffic conditions, to the case of non-equilibrium conditions, while preserving consistency with known existence and uniqueness results on MTE. We then exhibit sufficient conditions on the network topology and the latency functions for those MTEs to be stable in the sense of Lyapunov for a single destination problem. For various more restricted classes of network topologies motivated by the observed properties of travel patterns in the Singapore network, under certain assumptions we prove local exponential stability of the MTE, and derive analytical results on the sensitivity of the characteristic time of convergence to network and traffic parameters. The results proposed in this work are illustrated and validated on synthetic toy problems as well as on the Singapore road network with real demand and traffic data.

Suggested Citation

  • Boyer, Sebastien & Blandin, Sebastien & Wynter, Laura, 2015. "Stability of transportation networks under adaptive routing policies," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 886-903.
  • Handle: RePEc:eee:transb:v:81:y:2015:i:p3:p:886-903
    DOI: 10.1016/j.trb.2015.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515001988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin L. Hazelton & David P. Watling, 2004. "Computation of Equilibrium Distributions of Markov Traffic-Assignment Models," Transportation Science, INFORMS, vol. 38(3), pages 331-342, August.
    2. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    3. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    4. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    5. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    6. Anna Nagurney & Ding Zhang, 1997. "Projected Dynamical Systems in the Formulation, Stability Analysis, and Computation of Fixed-Demand Traffic Network Equilibria," Transportation Science, INFORMS, vol. 31(2), pages 147-158, May.
    7. G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
    8. D. Zhang & A. Nagurney, 1997. "Formulation, Stability, and Computation of Traffic Network Equilibria as Projected Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 417-444, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Watling, David P. & Hazelton, Martin L., 2018. "Asymptotic approximations of transient behaviour for day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 90-105.
    2. Ding-Mastera, Jing & Gao, Song & Jenelius, Erik & Rahmani, Mahmood & Ben-Akiva, Moshe, 2019. "A latent-class adaptive routing choice model in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2010. "A link-based day-to-day traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 597-608, May.
    2. Wang, Jian & He, Xiaozheng & Peeta, Srinivas, 2016. "Sensitivity analysis based approximation models for day-to-day link flow evolution process," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 35-53.
    3. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    4. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Tan, Zhijia, 2015. "Link-based day-to-day network traffic dynamics and equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 248-260.
    5. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
    6. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    7. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    8. Xiaomei Zhao & Chunhua Wan & Jun Bi, 2019. "Day-to-Day Assignment Models and Traffic Dynamics Under Information Provision," Networks and Spatial Economics, Springer, vol. 19(2), pages 473-502, June.
    9. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
    10. Wen-yi Zhang & Wei Guan & Ji-hui Ma & Jun-fang Tian, 2015. "A Nonlinear Pairwise Swapping Dynamics to Model the Selfish Rerouting Evolutionary Game," Networks and Spatial Economics, Springer, vol. 15(4), pages 1075-1092, December.
    11. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    12. Minyu Shen & Feng Xiao & Weihua Gu & Hongbo Ye, 2024. "Cognitive Hierarchy in Day-to-day Network Flow Dynamics," Papers 2409.11908, arXiv.org.
    13. Huijun Sun & Si Zhang & Linghui Han & Xiaomei Zhao & Lu Lou, 2020. "Day-to-Day Evolution Model Based on Dynamic Reference Point with Heterogeneous Travelers," Networks and Spatial Economics, Springer, vol. 20(4), pages 935-961, December.
    14. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    15. Rambha, Tarun & Boyles, Stephen D., 2016. "Dynamic pricing in discrete time stochastic day-to-day route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 104-118.
    16. Liu, Wei & Geroliminis, Nikolas, 2017. "Doubly dynamics for multi-modal networks with park-and-ride and adaptive pricing," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 162-179.
    17. Wei Nai & Zan Yang & Dan Li & Lu Liu & Yuting Fu & Yuao Guo, 2024. "Urban Day-to-Day Travel and Its Development in an Information Environment: A Review," Sustainability, MDPI, vol. 16(6), pages 1-29, March.
    18. Feng Xiao & Minyu Shen & Zhengtian Xu & Ruijie Li & Hai Yang & Yafeng Yin, 2019. "Day-to-Day Flow Dynamics for Stochastic User Equilibrium and a General Lyapunov Function," Transportation Science, INFORMS, vol. 53(3), pages 683-694, May.
    19. Guo, Xiaolei & Liu, Henry X., 2011. "Bounded rationality and irreversible network change," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1606-1618.
    20. Peeta, Srinivas, 2016. "A marginal utility day-to-day traffic evolution model based on one-step strategic thinkingAuthor-Name: He, Xiaozheng," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 237-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:81:y:2015:i:p3:p:886-903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.