IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v71y2015icp158-181.html
   My bibliography  Save this article

The load-dependent vehicle routing problem and its pick-up and delivery extension

Author

Listed:
  • Zachariadis, Emmanouil E.
  • Tarantilis, Christos D.
  • Kiranoudis, Chris T.

Abstract

The present paper examines a Vehicle Routing Problem (VRP) of major practical importance which is referred to as the Load-Dependent VRP (LDVRP). LDVRP is applicable for transportation activities where the weight of the transported cargo accounts for a significant part of the vehicle gross weight. Contrary to the basic VRP which calls for the minimization of the distance travelled, the LDVRP objective is aimed at minimizing the total product of the distance travelled and the gross weight carried along this distance. Thus, it is capable of producing sensible routing plans which take into account the variation of the cargo weight along the vehicle trips. The LDVRP objective is closely related to the total energy requirements of the vehicle fleet, making it a credible alternative when the environmental aspects of transportation activities are examined and optimized. A novel LDVRP extension which considers simultaneous pick-up and delivery service is introduced, formulated and solved for the first time. To deal with large-scale instances of the examined problems, we propose a local-search algorithm. Towards an efficient implementation, the local-search algorithm employs a computational scheme which calculates the complex weighted-distance objective changes in constant time. Solution results are presented for both problems on a variety of well-known test cases demonstrating the effectiveness of the proposed solution approach. The structure of the obtained LDVRP and VRP solutions is compared in pursuit of interesting conclusions on the relative suitability of the two routing models, when the decision maker must deal with the weighted distance objective. In addition, results of a branch-and-cut procedure for small-scale instances of the LDVRP with simultaneous pick-ups and deliveries are reported. Finally, extensive computational experiments have been performed to explore the managerial implications of three key problem characteristics, namely the deviation of customer demands, the cargo to tare weight ratio, as well as the size of the available vehicle fleet.

Suggested Citation

  • Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2015. "The load-dependent vehicle routing problem and its pick-up and delivery extension," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 158-181.
  • Handle: RePEc:eee:transb:v:71:y:2015:i:c:p:158-181
    DOI: 10.1016/j.trb.2014.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514001933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2014.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derigs, U. & Kaiser, R., 2007. "Applying the attribute based hill climber heuristic to the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 177(2), pages 719-732, March.
    2. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    3. Waters, CDJ, 1988. "Expanding the scope of linear programming solutions for vehicle scheduling problems," Omega, Elsevier, vol. 16(6), pages 577-583.
    4. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2013. "Integrated distribution and loading planning via a compact metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 228(1), pages 56-71.
    5. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    6. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    7. Franceschetti, Anna & Honhon, Dorothée & Van Woensel, Tom & Bektaş, Tolga & Laporte, Gilbert, 2013. "The time-dependent pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 265-293.
    8. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    9. Christos D. Tarantilis & Afroditi K. Anagnostopoulou & Panagiotis P. Repoussis, 2013. "Adaptive Path Relinking for Vehicle Routing and Scheduling Problems with Product Returns," Transportation Science, INFORMS, vol. 47(3), pages 356-379, August.
    10. Augerat, P. & Belenguer, J. M. & Benavent, E. & Corberan, A. & Naddef, D., 1998. "Separating capacity constraints in the CVRP using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 546-557, April.
    11. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2012. "The Pallet-Packing Vehicle Routing Problem," Transportation Science, INFORMS, vol. 46(3), pages 341-358, August.
    12. Mauro Dell’Amico & Giovanni Righini & Matteo Salani, 2006. "A Branch-and-Price Approach to the Vehicle Routing Problem with Simultaneous Distribution and Collection," Transportation Science, INFORMS, vol. 40(2), pages 235-247, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    2. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    3. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    4. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    5. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.
    6. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    7. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    8. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    9. Yu, Yang & Wu, Yuting & Wang, Junwei, 2019. "Bi-objective green ride-sharing problem: Model and exact method," International Journal of Production Economics, Elsevier, vol. 208(C), pages 472-482.
    10. Zhang, Zhenzhen & Wei, Lijun & Lim, Andrew, 2015. "An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 20-35.
    11. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    12. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    13. Kramer, Raphael & Subramanian, Anand & Vidal, Thibaut & Cabral, Lucídio dos Anjos F., 2015. "A matheuristic approach for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 243(2), pages 523-539.
    14. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2017. "Vehicle routing strategies for pick-up and delivery service under two dimensional loading constraints," Operational Research, Springer, vol. 17(1), pages 115-143, April.
    15. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    16. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    17. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    18. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The impact of depot location, fleet composition and routing on emissions in city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 81-102.
    19. Arslan, Okan & Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Minimum cost path problem for Plug-in Hybrid Electric Vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 123-141.
    20. Shih-Che Lo & Yi-Cheng Shih, 2021. "A Genetic Algorithm with Quantum Random Number Generator for Solving the Pollution-Routing Problem in Sustainable Logistics Management," Sustainability, MDPI, vol. 13(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:71:y:2015:i:c:p:158-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.