IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v43y2009i7p784-797.html
   My bibliography  Save this article

Criticism of three-phase traffic theory

Author

Listed:
  • Schönhof, Martin
  • Helbing, Dirk

Abstract

After introducing the history and main points of three-phase traffic theory, we continue with a critical discussion based on its theoretical features and empirical traffic data. Our data originate from the German freeway A5 close to Frankfurt, i.e. from the same freeway section that has been the basis for the development of three-phase traffic theory. Despite of this, we end up with partially different interpretations of the observations. In particular, we highlight findings that are inconsistent with three-phase traffic theory and facts that question the concept of a "general pattern" of congested traffic flow. Finally, we discuss some open problems that call for the development of improved traffic models and further empirical studies.

Suggested Citation

  • Schönhof, Martin & Helbing, Dirk, 2009. "Criticism of three-phase traffic theory," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 784-797, August.
  • Handle: RePEc:eee:transb:v:43:y:2009:i:7:p:784-797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(09)00022-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    2. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    3. Daganzo, Carlos F., 1995. "Requiem for second-order fluid approximations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 277-286, August.
    4. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    5. Helbing, Dirk & Hennecke, Ansgar & Shvetsov, Vladimir & Treiber, Martin, 2001. "MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 183-211, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, T.S. & To, Kiwing & Wong, K.Y. Michael, 2024. "The dynamics of traffic congestion: Data from a freeway Electronic Toll Collection system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    2. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    3. Junwei Zeng & Yongsheng Qian & Fan Yin & Leipeng Zhu & Dejie Xu, 2022. "A multi-value cellular automata model for multi-lane traffic flow under lagrange coordinate," Computational and Mathematical Organization Theory, Springer, vol. 28(2), pages 178-192, June.
    4. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    5. Treiber, Martin & Kesting, Arne, 2011. "Evidence of convective instability in congested traffic flow: A systematic empirical and theoretical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1362-1377.
    6. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    7. Moshtagh, Mehrdad & Fathali, Jafar & Smith, J. MacGregor, 2018. "The Stochastic Queue Core problem, evacuation networks, and state-dependent queues," European Journal of Operational Research, Elsevier, vol. 269(2), pages 730-748.
    8. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    9. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    10. Járai-Szabó, Ferenc & Néda, Zoltán, 2012. "Earthquake model describes traffic jams caused by imperfect driving styles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5727-5738.
    11. MacGregor Smith, J. & Cruz, F.R.B., 2014. "M/G/c/c state dependent travel time models and properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 560-579.
    12. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    13. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    2. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    3. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    4. Li, Jia & Zhang, H.M., 2013. "The variational formulation of a non-equilibrium traffic flow model: Theory and implications," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 314-325.
    5. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    6. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    7. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 193-209.
    8. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    9. Fan, De-li & Zhang, Yi-cai & Shi, Yin & Xue, Yu & Wei, Fang-ping, 2018. "An extended continuum traffic model with the consideration of the optimal velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 402-413.
    10. Jincheng Jiang & Nico Dellaert & Tom Van Woensel & Lixin Wu, 2020. "Modelling traffic flows and estimating road travel times in transportation network under dynamic disturbances," Transportation, Springer, vol. 47(6), pages 2951-2980, December.
    11. Kachani, Soulaymane & Perakis, Georgia, 2006. "Fluid dynamics models and their applications in transportation and pricing," European Journal of Operational Research, Elsevier, vol. 170(2), pages 496-517, April.
    12. Jiang, Rui & Wu, Qing-Song, 2003. "Study on propagation speed of small disturbance from a car-following approach," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 85-99, January.
    13. Martin Schönhof & Dirk Helbing, 2007. "Empirical Features of Congested Traffic States and Their Implications for Traffic Modeling," Transportation Science, INFORMS, vol. 41(2), pages 135-166, May.
    14. Helbing, Dirk & Hennecke, Ansgar & Shvetsov, Vladimir & Treiber, Martin, 2001. "MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 183-211, February.
    15. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    16. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    17. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    18. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    19. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    20. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:43:y:2009:i:7:p:784-797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.