IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v42y2008i10p925-945.html
   My bibliography  Save this article

A quasi-dynamic capacity constrained frequency-based transit assignment model

Author

Listed:
  • Schmöcker, Jan-Dirk
  • Bell, Michael G.H.
  • Kurauchi, Fumitaka

Abstract

This paper presents a first approach to dynamic frequency-based transit assignment. As such the model aims to close the gap between schedule-based and frequency-based models. Frequency-based approaches have some advantages compared to schedule-based models, however, when modelling highly congested networks a static frequency-based approach is not sufficient as it does not reveal the peaked nature of the capacity problem. The central idea for dealing with the line capacity constraints is the introduction of a "fail-to-board" probability as in some circumstances passengers are not able to board the first service arriving due to overcrowding. The common line problem is taken into account and the search for the shortest hyperpath is influenced by the fail-to-board probability. An assumption that passengers mingle on the platform allows a Markov network loading process which respects the priority of on-board passengers with respect to those wishing to board. The study period is divided into several time intervals and those passengers who failed to board are added to the demand in the subsequent time interval and so might reconsider their route choice. Trips that are longer than one interval are also carried over to subsequent time intervals. The approach is first illustrated with a small example network and then with a case study relating to London, where transit capacity problems are experienced daily during the peak period.

Suggested Citation

  • Schmöcker, Jan-Dirk & Bell, Michael G.H. & Kurauchi, Fumitaka, 2008. "A quasi-dynamic capacity constrained frequency-based transit assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 925-945, December.
  • Handle: RePEc:eee:transb:v:42:y:2008:i:10:p:925-945
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(08)00020-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    2. Roberto Cominetti & José Correa, 2001. "Common-Lines and Passenger Assignment in Congested Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 250-267, August.
    3. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    2. Younes Hamdouch & Siriphong Lawphongpanich, 2010. "Congestion Pricing for Schedule-Based Transit Networks," Transportation Science, INFORMS, vol. 44(3), pages 350-366, August.
    3. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    4. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    5. Esteve Codina, 2013. "A Variational Inequality Reformulation of a Congested Transit Assignment Model by Cominetti, Correa, Cepeda, and Florian," Transportation Science, INFORMS, vol. 47(2), pages 231-246, May.
    6. Kumar, Pramesh & Khani, Alireza, 2022. "Planning of integrated mobility-on-demand and urban transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 499-521.
    7. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
    8. Cortés, Cristián E. & Jara-Moroni, Pedro & Moreno, Eduardo & Pineda, Cristobal, 2013. "Stochastic transit equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 29-44.
    9. Valentina Trozzi & Guido Gentile & Ioannis Kaparias & Michael Bell, 2015. "Effects of Countdown Displays in Public Transport Route Choice Under Severe Overcrowding," Networks and Spatial Economics, Springer, vol. 15(3), pages 823-842, September.
    10. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
    11. Shang, Pan & Xiong, Yufan & Guo, Jifu & Xian, Kai & Yu, Yun & Xu, Han, 2024. "A modeling framework to integrate frequency - and schedule-based passenger assignment approaches for coordinated path choice and space-time trajectory estimation based on multi-source observations," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    12. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
    13. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    14. Khani, Alireza, 2019. "An online shortest path algorithm for reliable routing in schedule-based transit networks considering transfer failure probability," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 549-564.
    15. Trozzi, Valentina & Gentile, Guido & Bell, Michael G.H. & Kaparias, Ioannis, 2013. "Dynamic user equilibrium in public transport networks with passenger congestion and hyperpaths," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 266-285.
    16. S. Mahmassani, Hani & F. Hyland, Michael, 2016. "Gap-based transit assignment algorithm with vehicle capacity constraints: Simulation-based implementation and large-scale applicationAuthor-Name: Verbas, Ömer," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 1-16.
    17. Li, Qianfei & (Will) Chen, Peng & (Marco) Nie, Yu, 2015. "Finding optimal hyperpaths in large transit networks with realistic headway distributions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 98-108.
    18. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Pareto-improving congestion pricing on multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 210(3), pages 660-669, May.
    19. Codina, Esteve & Rosell, Francisca, 2017. "A heuristic method for a congested capacitated transit assignment model with strategies," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 293-320.
    20. Binder, Stefan & Maknoon, Yousef & Bierlaire, Michel, 2017. "Exogenous priority rules for the capacitated passenger assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 19-42.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:42:y:2008:i:10:p:925-945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.