IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v39y2005i1p47-63.html
   My bibliography  Save this article

A transport network reliability model for the efficient assignment of resources

Author

Listed:
  • Sánchez-Silva, M.
  • Daniels, M.
  • Lleras, G.
  • Patiño, D.

Abstract

Recently, several papers have been published addressing transport network reliability acknowledging it as a priority for future research. A model for optimizing the allocation of resources based on the operational reliability of transport network systems is proposed. The optimum assignment of resources is carried out based on a set of possible actions described in terms of the failure and repair rates of every link. Thus, the model optimizes the assignment of resources so that the accessibility of a centroid or the total network is maximized. The methodology provides also an alternative to model the decisions of the user as he/she travels between two centroids. A case study in Colombia is used to illustrate the applicability and the benefits of the model. The results can be used for the optimum allocation of resources for road maintenance and rehabilitation.

Suggested Citation

  • Sánchez-Silva, M. & Daniels, M. & Lleras, G. & Patiño, D., 2005. "A transport network reliability model for the efficient assignment of resources," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 47-63, January.
  • Handle: RePEc:eee:transb:v:39:y:2005:i:1:p:47-63
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(04)00039-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongyun Yue & John Mangan, 2024. "A framework for understanding reliability in container shipping networks," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(3), pages 523-544, September.
    2. López, Fernando A. & Páez, Antonio & Carrasco, Juan A. & Ruminot, Natalia A., 2017. "Vulnerability of nodes under controlled network topology and flow autocorrelation conditions," Journal of Transport Geography, Elsevier, vol. 59(C), pages 77-87.
    3. Hu Shao & William Lam & Mei Tam, 2006. "A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand," Networks and Spatial Economics, Springer, vol. 6(3), pages 173-204, September.
    4. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    5. Gerson Tontini & Érica Souza Mazato & Paula Carolina Ferretti & Soraya Bachmann Sousa, 2024. "Factors influencing intention to use ridesharing or intercity bus services: a nonlinear point of View," Transportation, Springer, vol. 51(6), pages 2103-2138, December.
    6. Rajesh S. Prabhu Gaonkar & V. Mariappan, 0. "Transportation time reliability appraisal in maritime context," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-11.
    7. Alper Döyen & Necati Aras, 2019. "An Integrated Disaster Preparedness Model for Retrofitting and Relief Item Transportation," Networks and Spatial Economics, Springer, vol. 19(4), pages 1031-1068, December.
    8. Rajesh S. Prabhu Gaonkar & V. Mariappan, 2020. "Transportation time reliability appraisal in maritime context," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 736-746, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:39:y:2005:i:1:p:47-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.