IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v30y1996i2p133-145.html
   My bibliography  Save this article

An analytical framework for routing multiattribute multicommodity freight

Author

Listed:
  • Popken, Douglas A.

Abstract

An analytical framework is developed to account for both the weight and the cubic volume of freight when selecting the most cost-effective shipping routes. The objective is to achieve higher utilizations of both the weight and the volume capacities of the carrying vehicles, achieved in this case by mixing freight at transshipment terminals. This paper develops a marginal cost based framework to analyze the resulting tradeoffs between travel distance and vehicle capacity utilization in the context of freight carrier operations. The framework is robust and requires only a relatively small number of system parameters. It will be used to show how weight and volume, along with travel distance and other key system parameters, play an important role in determining cost-effective shipping routes.

Suggested Citation

  • Popken, Douglas A., 1996. "An analytical framework for routing multiattribute multicommodity freight," Transportation Research Part B: Methodological, Elsevier, vol. 30(2), pages 133-145, April.
  • Handle: RePEc:eee:transb:v:30:y:1996:i:2:p:133-145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(95)00021-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Douglas A. Popken, 1994. "An Algorithm for the Multiattribute, Multicommodity Flow Problem with Freight Consolidation and Inventory Costs," Operations Research, INFORMS, vol. 42(2), pages 274-286, April.
    2. Warren B. Powell & Ioannis A. Koskosidis, 1992. "Shipment Routing Algorithms with Tree Constraints," Transportation Science, INFORMS, vol. 26(3), pages 230-245, August.
    3. Hall, Randolph W., 1991. "Route selection on freight networks with weight and volume constraints," Transportation Research Part B: Methodological, Elsevier, vol. 25(4), pages 175-189, August.
    4. Daganzo, Carlos F., 1988. "Shipment composition enhancement at a consolidation center," Transportation Research Part B: Methodological, Elsevier, vol. 22(2), pages 103-124, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adel Ghazikhani & Samaneh Davoodipoor & Amir M. Fathollahi-Fard & Mohammad Gheibi & Reza Moezzi, 2024. "Robust Truck Transit Time Prediction through GPS Data and Regression Algorithms in Mixed Traffic Scenarios," Mathematics, MDPI, vol. 12(13), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Yee Lee & Sila Çetinkaya & Wikrom Jaruphongsa, 2003. "A Dynamic Model for Inventory Lot Sizing and Outbound Shipment Scheduling at a Third-Party Warehouse," Operations Research, INFORMS, vol. 51(5), pages 735-747, October.
    2. Sıla Çetinkaya & Chung‐Yee Lee, 2002. "Optimal outbound dispatch policies: Modeling inventory and cargo capacity," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 531-556, September.
    3. Chen, Jing & Dong, Ming & Xu, Lei, 2018. "A perishable product shipment consolidation model considering freshness-keeping effort," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 56-86.
    4. Yan, Shangyao & Young, Hwei-Fwa, 1996. "A decision support framework for multi-fleet routing and multi-stop flight scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 379-398, September.
    5. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    6. Keng Hoo Chuah & Jon C. Yingling, 2005. "Routing for a Just-in-Time Supply Pickup and Delivery System," Transportation Science, INFORMS, vol. 39(3), pages 328-339, August.
    7. Mepparambath, Rakhi Manohar & Cheah, Lynette & Courcoubetis, Costas, 2021. "A theoretical framework to evaluate the traffic impact of urban freight consolidation centres," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    8. Luminiţa Nicolescu & Cristina Galalae & Alexandru Voicu, 2013. "Solving a Supply Chain Management Problem to Near Optimality Using Ant Colony Optimization, in an International Context," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 15(33), pages 8-26, February.
    9. Sophie D. Lapierre & Angel B. Ruiz & Patrick Soriano, 2004. "Designing Distribution Networks: Formulations and Solution Heuristic," Transportation Science, INFORMS, vol. 38(2), pages 174-187, May.
    10. Musolino, Giuseppe & Rindone, Corrado & Polimeni, Antonio & Vitetta, Antonino, 2019. "Planning urban distribution center location with variable restocking demand scenarios: General methodology and testing in a medium-size town," Transport Policy, Elsevier, vol. 80(C), pages 157-166.
    11. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    12. Lawrence C. Leung & Yer Van Hui & Yong Wang & Gang Chen, 2009. "A 0--1 LP Model for the Integration and Consolidation of Air Cargo Shipments," Operations Research, INFORMS, vol. 57(2), pages 402-412, April.
    13. Chitsaz, Masoud & Cordeau, Jean-François & Jans, Raf, 2020. "A branch-and-cut algorithm for an assembly routing problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 896-910.
    14. Masoud Chitsaz & Jean-François Cordeau & Raf Jans, 2019. "A Unified Decomposition Matheuristic for Assembly, Production, and Inventory Routing," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 134-152, February.
    15. Qin, Hu & Zhang, Zizhen & Qi, Zhuxuan & Lim, Andrew, 2014. "The freight consolidation and containerization problem," European Journal of Operational Research, Elsevier, vol. 234(1), pages 37-48.
    16. Greening, Lacy M. & Dahan, Mathieu & Erera, Alan L., 2023. "Lead-Time-Constrained Middle-Mile Consolidation Network Design with Fixed Origins and Destinations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    17. Hanbazazah, Abdulkader S. & Abril, Luis & Erkoc, Murat & Shaikh, Nazrul, 2019. "Freight consolidation with divisible shipments, delivery time windows, and piecewise transportation costs," European Journal of Operational Research, Elsevier, vol. 276(1), pages 187-201.
    18. Tamvada, Srinivas Subramanya & Mansouri, Bahareh & Hassini, Elkafi & Pribytkov, Theodore, 2021. "An integer programming model and directed Steiner-forest based heuristic for routing less-than-truckload freight," International Journal of Production Economics, Elsevier, vol. 232(C).
    19. Estrada, Miquel & Roca-Riu, Mireia, 2017. "Stakeholder’s profitability of carrier-led consolidation strategies in urban goods distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 165-188.
    20. Çetinkaya, SIla & Bookbinder, James H., 2003. "Stochastic models for the dispatch of consolidated shipments," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 747-768, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:30:y:1996:i:2:p:133-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.