IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v26y1992i3p230-245.html
   My bibliography  Save this article

Shipment Routing Algorithms with Tree Constraints

Author

Listed:
  • Warren B. Powell

    (Princeton University, School of Engineering and Applied Science, Princeton, New Jersey 08544)

  • Ioannis A. Koskosidis

    (Department of Civil Engineering and The Institute for Transportation Systems, The City College of New York, New York, New York 10031)

Abstract

Routing shipments efficiently on less-than-truckload trucking networks represents an important subproblem of the general network design problem that arises when designing a service network. The objective of the LTL shipment routing problem is to minimize the total transportation and handling costs subject to two key constraints: (i) service between two terminals must always satisfy a given minimum frequency (measured in trailers per week) and (ii) the paths from all origins into a destination should form a tree. This second constraint reflects a practical limitation on the types of instructions that can be implemented in the field. A solution approach is developed using a shortest path based formulation with additional routing constraints imposed to refine the routing in response to minimum frequency constraints. A local improvement heuristic is presented which manipulates the routing constraints. A separate set of primal-dual algorithms are also developed which provide both upper and lower bounds. Numerical experiments are presented to evaluate the effectiveness of both the local improvement heuristic and the primal-dual algorithms.

Suggested Citation

  • Warren B. Powell & Ioannis A. Koskosidis, 1992. "Shipment Routing Algorithms with Tree Constraints," Transportation Science, INFORMS, vol. 26(3), pages 230-245, August.
  • Handle: RePEc:inm:ortrsc:v:26:y:1992:i:3:p:230-245
    DOI: 10.1287/trsc.26.3.230
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.26.3.230
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.26.3.230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Popken, Douglas A., 1996. "An analytical framework for routing multiattribute multicommodity freight," Transportation Research Part B: Methodological, Elsevier, vol. 30(2), pages 133-145, April.
    2. Tamvada, Srinivas Subramanya & Mansouri, Bahareh & Hassini, Elkafi & Pribytkov, Theodore, 2021. "An integer programming model and directed Steiner-forest based heuristic for routing less-than-truckload freight," International Journal of Production Economics, Elsevier, vol. 232(C).
    3. Yan, Shangyao & Young, Hwei-Fwa, 1996. "A decision support framework for multi-fleet routing and multi-stop flight scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 379-398, September.
    4. Lin, Cheng-Chang, 2001. "The freight routing problem of time-definite freight delivery common carriers," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 525-547, July.
    5. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    6. Greening, Lacy M. & Dahan, Mathieu & Erera, Alan L., 2023. "Lead-Time-Constrained Middle-Mile Consolidation Network Design with Fixed Origins and Destinations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    7. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    8. Alan Erera & Michael Hewitt & Martin Savelsbergh & Yang Zhang, 2013. "Improved Load Plan Design Through Integer Programming Based Local Search," Transportation Science, INFORMS, vol. 47(3), pages 412-427, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:26:y:1992:i:3:p:230-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.