IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v177y2023ics0191261523001443.html
   My bibliography  Save this article

RIde-hail vehicle routing (RIVER) as a congestion game

Author

Listed:
  • Zhang, Kenan
  • Mittal, Archak
  • Djavadian, Shadi
  • Twumasi-Boakye, Richard
  • Nie, Yu (Marco)

Abstract

The RIde-hail VEhicle Routing (RIVER) problem describes how drivers in a ride-hail market form a dynamic routing strategy according to the expected reward in each zone of the market. We model this decision-making problem as a Markov decision process (MDP), and view the drivers as playing an MDP routing game, with “congestion” induced by competitive matching in a zone. The meeting probability (i.e., the probability of successfully picking up a passenger after cruising in a zone for one period) is derived from a physical model, which is specified for street-hail and e-hail service modes separately, and calibrated with simulation data. We define a Wardrop equilibrium for the MDP routing game, and then prove it exists and can be obtained by solving a fixed-point problem. We further show a system optimum – corresponding to the maximum total expected reward accumulated over time by all drivers – can be achieved if drivers make individual routing decisions according to a cooperative reward rather than the personal reward. In other words, the proposed cooperative strategy “decentralizes” the system optimal solution in the MDP routing game. The results from numerical experiments, including a case study of Chicago, indicate the service mode plays a critical role in shaping system performance. While e-hail enjoys a higher fleet utilization rate than street-hail thanks to its more advanced matching technology, it may lead to a more uneven spatial distribution of vacant vehicle supply. As expected, cooperative routing improves system performance in terms of both total reward and equal distribution of supply. Yet, its benefit is much stronger in e-hail than in street-hail, especially when the supply is overly abundant. We also find, when a local demand surge occurs, the cooperative rewards rise in sync, similar to surge pricing on the supply side. Interestingly, the impact of the price surge spreads broadly in space, propagating far beyond the epicenter of the demand surge.

Suggested Citation

  • Zhang, Kenan & Mittal, Archak & Djavadian, Shadi & Twumasi-Boakye, Richard & Nie, Yu (Marco), 2023. "RIde-hail vehicle routing (RIVER) as a congestion game," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:transb:v:177:y:2023:i:c:s0191261523001443
    DOI: 10.1016/j.trb.2023.102819
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523001443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.102819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harish Guda & Upender Subramanian, 2019. "Your Uber Is Arriving: Managing On-Demand Workers Through Surge Pricing, Forecast Communication, and Worker Incentives," Management Science, INFORMS, vol. 67(5), pages 1995-2014, May.
    2. Anna Nagurney & David Boyce, 2005. "Preface to “On a Paradox of Traffic Planning”," Transportation Science, INFORMS, vol. 39(4), pages 443-445, November.
    3. Ricardo Lagos, 2003. "An Analysis of the Market for Taxicab Rides in New York City," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 423-434, May.
    4. Xu, Zhengtian & Yin, Yafeng & Chao, Xiuli & Zhu, Hongtu & Ye, Jieping, 2021. "A generalized fluid model of ride-hailing systems," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 587-605.
    5. Judd Cramer & Alan B. Krueger, 2016. "Disruptive Change in the Taxi Business: The Case of Uber," American Economic Review, American Economic Association, vol. 106(5), pages 177-182, May.
    6. Dietrich Braess & Anna Nagurney & Tina Wakolbinger, 2005. "On a Paradox of Traffic Planning," Transportation Science, INFORMS, vol. 39(4), pages 446-450, November.
    7. Kostas Bimpikis & Ozan Candogan & Daniela Saban, 2019. "Spatial Pricing in Ride-Sharing Networks," Operations Research, INFORMS, vol. 67(3), pages 744-769, May.
    8. Yang, Hai & Yang, Teng, 2011. "Equilibrium properties of taxi markets with search frictions," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 696-713, May.
    9. Zhang, Kenan & Nie, Yu (Marco), 2021. "Inter-platform competition in a regulated ride-hail market with pooling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    10. Ricardo Lagos, 2000. "An Alternative Approach to Search Frictions," Journal of Political Economy, University of Chicago Press, vol. 108(5), pages 851-873, October.
    11. Zhang, Kenan & Nie, Yu (Marco), 2021. "To pool or not to pool: Equilibrium, pricing and regulation," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 59-90.
    12. Yang, Hai & Wong, S. C., 1998. "A network model of urban taxi services," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 235-246, May.
    13. Zhang, Kenan & Nie, Yu (Marco), 2022. "Mitigating traffic congestion induced by transportation network companies: A policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 96-118.
    14. Yang, Hai & Huang, Hai-Jun, 1998. "Principle of marginal-cost pricing: how does it work in a general road network?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 45-54, January.
    15. Yu, Xinlian & Gao, Song & Hu, Xianbiao & Park, Hyoshin, 2019. "A Markov decision process approach to vacant taxi routing with e-hailing," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 114-134.
    16. Anton Braverman & J. G. Dai & Xin Liu & Lei Ying, 2019. "Empty-Car Routing in Ridesharing Systems," Operations Research, INFORMS, vol. 67(5), pages 1437-1452, September.
    17. Guillaume R. Fréchette & Alessandro Lizzeri & Tobias Salz, 2019. "Frictions in a Competitive, Regulated Market: Evidence from Taxis," American Economic Review, American Economic Association, vol. 109(8), pages 2954-2992, August.
    18. Arnott, Richard, 1996. "Taxi Travel Should Be Subsidized," Journal of Urban Economics, Elsevier, vol. 40(3), pages 316-333, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Kenan & Nie, Yu (Marco), 2022. "Mitigating traffic congestion induced by transportation network companies: A policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 96-118.
    2. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    3. Zhang, Kenan & Nie, Yu (Marco), 2021. "To pool or not to pool: Equilibrium, pricing and regulation," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 59-90.
    4. Soheil Ghili & Vineet Kumar, 2021. "Spatial Distribution of Supply and the Role of Market Thickness: Theory and Evidence from Ride Sharing," Papers 2108.05954, arXiv.org.
    5. Soheil Ghili, 2021. "Optimal Bundling: Characterization, Interpretation, and Implications for Empirical Work," Cowles Foundation Discussion Papers 2273, Cowles Foundation for Research in Economics, Yale University.
    6. Soheil Ghili & Vineet Kumar, 2020. "Spatial Distribution of Supply and the Role of Market Thickness: Theory and Evidence from Ride Sharing," Cowles Foundation Discussion Papers 2219, Cowles Foundation for Research in Economics, Yale University.
    7. Selcuk, Cemil & Gokpinar, Bilal, 2022. "Incentivizing flexible workers in the gig economy: The case of ride-hailing," Cardiff Economics Working Papers E2022/11, Cardiff University, Cardiff Business School, Economics Section.
    8. Soheil Ghili & Vineet Kumar, 2020. "Spatial Distribution of Supply and the Role of Market Thickness: Theory and Evidence from Ride Sharing," Cowles Foundation Discussion Papers 2219R, Cowles Foundation for Research in Economics, Yale University, revised Aug 2020.
    9. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    10. Vignon, Daniel & Yin, Yafeng & Ke, Jintao, 2023. "Regulating the ride-hailing market in the age of uberization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    11. Lam, Chungsang Tom & Liu, Meng & Hui, Xiang, 2021. "The geography of ridesharing: A case study on New York City," Information Economics and Policy, Elsevier, vol. 57(C).
    12. Liu, Yang & Li, Sen, 2023. "An economic analysis of on-demand food delivery platforms: Impacts of regulations and integration with ride-sourcing platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    13. Di Ao & Jing Gao & Zhijie Lai & Sen Li, 2021. "Regulating Transportation Network Companies with a Mixture of Autonomous Vehicles and For-Hire Human Drivers," Papers 2112.07218, arXiv.org, revised Dec 2023.
    14. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    15. Shetty, Akhil & Li, Sen & Tavafoghi, Hamidreza & Qin, Junjie & Poolla, Kameshwar & Varaiya, Pravin, 2022. "An analysis of labor regulations for transportation network companies," Economics of Transportation, Elsevier, vol. 32(C).
    16. Yang, Hai & Leung, Cowina W.Y. & Wong, S.C. & Bell, Michael G.H., 2010. "Equilibria of bilateral taxi-customer searching and meeting on networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1067-1083, September.
    17. Li, Sen & Yang, Hai & Poolla, Kameshwar & Varaiya, Pravin, 2021. "Spatial pricing in ride-sourcing markets under a congestion charge," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 18-45.
    18. Yang, Hai & Yang, Teng, 2011. "Equilibrium properties of taxi markets with search frictions," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 696-713, May.
    19. Xu, Zhengtian & Yin, Yafeng & Chao, Xiuli & Zhu, Hongtu & Ye, Jieping, 2021. "A generalized fluid model of ride-hailing systems," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 587-605.
    20. Thorsten Heilker & Gernot Sieg, 2017. "A duopoly of transportation network companies and traditional radio-taxi dispatch service agencies," Working Papers 24, Institute of Transport Economics, University of Muenster.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:177:y:2023:i:c:s0191261523001443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.