IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v118y2018icp31-65.html
   My bibliography  Save this article

Stability analysis and variable speed limit control of a traffic flow model

Author

Listed:
  • Zhang, Yihang
  • Ioannou, Petros A.

Abstract

The cell transmission traffic flow model (CTM) has attracted considerable interest in the field of transportation due to its simplicity as well as the ability to capture most of the macroscopic traffic flow characteristics. The stability properties of the CTM under different demand and capacity constraints are not always obvious. In addition, the impact of microscopic phenomena such as forced lane changes at bottlenecks leading to capacity drop is not captured by the CTM. In this paper, we start with a single section and modify the CTM to account for capacity drop. We analyze the stability properties of the CTM under all possible demand and capacity constraints as well as all possible initial density conditions. The analysis is used to motivate the design of variable speed limit (VSL) control to overcome capacity drop and achieve the maximum possible flow under all feasible traffic situations. The results are extended to multiple sections, where the stability properties of the open-loop system are analyzed and a VSL control scheme is designed and shown to achieve the objective of maximizing the traffic flow under different demand and capacity constraints. Unlike the open loop system where an infinite number of equilibrium points exist under certain demand levels, the proposed nonlinear VSL scheme guarantees exponential convergence to a unique equilibrium point that corresponds to maximum possible flow and speed under all possible demand levels and capacity constraints.

Suggested Citation

  • Zhang, Yihang & Ioannou, Petros A., 2018. "Stability analysis and variable speed limit control of a traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 31-65.
  • Handle: RePEc:eee:transb:v:118:y:2018:i:c:p:31-65
    DOI: 10.1016/j.trb.2018.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151830417X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, Anupam & Jin, Wen-Long & Lebacque, Jean-Patrick, 2015. "A modified Cell Transmission Model with realistic queue discharge features at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 302-315.
    2. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    3. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    4. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irena Strnad & Rok Marsetič, 2023. "Differential Evolution Based Numerical Variable Speed Limit Control Method with a Non-Equilibrium Traffic Model," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    2. Yuan, Tianchen & Ioannou, Petros A., 2023. "Coordinated Traffic Flow Control in a Connected Environment," Institute of Transportation Studies, Working Paper Series qt6q67f9z4, Institute of Transportation Studies, UC Davis.
    3. Yuan, Tianchen & Alasiri, Faisal & Ioannou, Petros A., 2022. "Robust Design, Analysis and Evaluation of Variable Speed Limit Control in a Connected Environment with Uncertainties: Performance Evaluation and Environmental Benefits," Institute of Transportation Studies, Working Paper Series qt2q60p994, Institute of Transportation Studies, UC Davis.
    4. Gao, Hang & Chen, Shenyang & Zhang, Michael, 2020. "Get More Out of Variable Speed Limit (VSL) Control: An Integrated Approach to Manage Traffic Corridors with Multiple Bottlenecks," Institute of Transportation Studies, Working Paper Series qt6th037wz, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Wei & Hu, Yang, 2022. "A modified cell transmission model considering queuing characteristics for channelized zone at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    3. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    4. Schmitt, Marius & Lygeros, John, 2018. "An exact convex relaxation of the freeway network control problem with controlled merging junctions," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 1-25.
    5. Schmitt, Marius & Lygeros, John, 2020. "On convexity of the robust freeway network control problem in the presence of prediction and model uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 167-190.
    6. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    7. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    8. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    10. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    11. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    12. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    14. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2005. "A within-day dynamic traffic assignment model for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 1-29, January.
    15. Jin, Wen-Long, 2010. "Continuous kinematic wave models of merging traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1084-1103, September.
    16. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    17. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    18. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    19. Fatemeh Enayatollahi & Ahmed Osman Idris & M. A. Amiri Atashgah, 2019. "Modelling bus bunching under variable transit demand using cellular automata," Public Transport, Springer, vol. 11(2), pages 269-298, August.
    20. Ma, Changxi & Guo, Jing & Zhao, Yongpeng, 2023. "Variable speed limit control strategy at the entrance and exit of freeway tunnel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:118:y:2018:i:c:p:31-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.