IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v117y2018ipbp676-686.html
   My bibliography  Save this article

Minimal parameter formulations of the dynamic user equilibrium using macroscopic urban models: Freeway vs city streets revisited

Author

Listed:
  • Laval, Jorge A.
  • Leclercq, Ludovic
  • Chiabaut, Nicolas

Abstract

This paper investigates the dynamic user equilibrium (DUE) on a single origin-destination pair with two alternative routes, a freeway with a fixed capacity and the surrounding city-streets network, modeled with a network macroscopic fundamental diagram (NMFD). We find using suitable transformations that only a single network parameter is required to characterize the DUE solution, the freeway to NMFD capacity ratio. We also show that the stability and convergence properties of this system are captured by the constant demand case, which corresponds to an autonomous dynamical system that admits analytical solutions. This solution is characterized by two critical accumulation values that determine if the steady state is in free-flow or gridlock, depending on the initial accumulation. Additionally, we also propose a continuum approximation to account for the spatial evolution of congestion, by including variable trip length and variable NMFD coverage area in the model. It is found that gridlock cannot happen and that the steady-state solution is independent of surface network parameters. These parameters do affect the rate of convergence to the steady-state solution, but convergence rates appear virtually identical when time is expressed in units of the NMFD free-flow travel time.

Suggested Citation

  • Laval, Jorge A. & Leclercq, Ludovic & Chiabaut, Nicolas, 2018. "Minimal parameter formulations of the dynamic user equilibrium using macroscopic urban models: Freeway vs city streets revisited," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 676-686.
  • Handle: RePEc:eee:transb:v:117:y:2018:i:pb:p:676-686
    DOI: 10.1016/j.trb.2017.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517307464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laval, Jorge A. & Castrillón, Felipe, 2015. "Stochastic approximations for the macroscopic fundamental diagram of urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 904-916.
    2. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    3. Laval, Jorge A. & Chilukuri, Bhargava R., 2016. "Symmetries in the kinematic wave model and a parameter-free representation of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 168-177.
    4. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    5. Fosgerau, Mogens, 2015. "Congestion in the bathtub," Economics of Transportation, Elsevier, vol. 4(4), pages 241-255.
    6. Laval, Jorge A., 2009. "Graphical solution and continuum approximation for the single destination dynamic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 108-118, January.
    7. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    8. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2014. "Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 186-200.
    9. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    10. Daganzo, Carlos F. & Knoop, Victor L., 2016. "Traffic flow on pedestrianized streets," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 211-222.
    11. Leclercq, Ludovic & Geroliminis, Nikolas, 2013. "Estimating MFDs in simple networks with route choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 468-484.
    12. Mariotte, Guilhem & Leclercq, Ludovic & Laval, Jorge A., 2017. "Macroscopic urban dynamics: Analytical and numerical comparisons of existing models," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 245-267.
    13. Daganzo, Carlos F. & Lehe, Lewis J., 2015. "Distance-dependent congestion pricing for downtown zones," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 89-99.
    14. Haddad, Jack & Geroliminis, Nikolas, 2012. "On the stability of traffic perimeter control in two-region urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1159-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludovic Leclercq & Mahendra Paipuri, 2019. "Macroscopic Traffic Dynamics Under Fast-Varying Demand," Transportation Science, INFORMS, vol. 53(6), pages 1526-1545, November.
    2. Gao, Shengling & Li, Daqing & Zheng, Nan & Hu, Ruiqi & She, Zhikun, 2022. "Resilient perimeter control for hyper-congested two-region networks with MFD dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 50-75.
    3. Pandey, Ayush & Lehe, Lewis J. & Gayah, Vikash V., 2024. "Local stability of traffic equilibria in an isotropic network," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    4. Huang, Y.P. & Xiong, J.H. & Sumalee, A. & Zheng, N. & Lam, W.H.K. & He, Z.B. & Zhong, R.X., 2020. "A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 1-25.
    5. Lehe, Lewis J. & Pandey, Ayush, 2024. "A bathtub model of transit congestion," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    6. Mariotte, Guilhem & Leclercq, Ludovic, 2019. "Flow exchanges in multi-reservoir systems with spillbacks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 327-349.
    7. Yildirimoglu, Mehmet & Ramezani, Mohsen, 2020. "Demand management with limited cooperation among travellers: A doubly dynamic approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 267-284.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    2. Mariotte, Guilhem & Leclercq, Ludovic & Laval, Jorge A., 2017. "Macroscopic urban dynamics: Analytical and numerical comparisons of existing models," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 245-267.
    3. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
    4. Yildirimoglu, Mehmet & Ramezani, Mohsen, 2020. "Demand management with limited cooperation among travellers: A doubly dynamic approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 267-284.
    5. Pandey, Ayush & Lehe, Lewis J. & Gayah, Vikash V., 2024. "Local stability of traffic equilibria in an isotropic network," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    6. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 99-118.
    7. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    8. Ludovic Leclercq & Mahendra Paipuri, 2019. "Macroscopic Traffic Dynamics Under Fast-Varying Demand," Transportation Science, INFORMS, vol. 53(6), pages 1526-1545, November.
    9. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    10. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    11. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    12. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.
    13. S. F. A. Batista & Ludovic Leclercq, 2019. "Regional Dynamic Traffic Assignment Framework for Macroscopic Fundamental Diagram Multi-regions Models," Transportation Science, INFORMS, vol. 53(6), pages 1563-1590, November.
    14. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    15. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    16. Lehe, Lewis J. & Pandey, Ayush, 2024. "A bathtub model of transit congestion," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    17. Paipuri, Mahendra & Leclercq, Ludovic, 2020. "Bi-modal macroscopic traffic dynamics in a single region," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 257-290.
    18. Huang, Y.P. & Xiong, J.H. & Sumalee, A. & Zheng, N. & Lam, W.H.K. & He, Z.B. & Zhong, R.X., 2020. "A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 1-25.
    19. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    20. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2021. "Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:117:y:2018:i:pb:p:676-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.