IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v74y2015icp79-87.html
   My bibliography  Save this article

Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand

Author

Listed:
  • Ng, ManWo

Abstract

The problem of optimal container vessels deployment is one of great significance for the liner shipping industry. Although the pioneering work on this problem dates back to the early 1990s, only until recently have researchers started to acknowledge and account for the significant amount of uncertainty present in shipping demand in real world container shipping. In this paper, new analytical results are presented to further relax the input requirements for this problem. Specifically, only the mean and variance of the maximum shipping demand are required to be known. An optional symmetry assumption is shown to further reduce the feasible region and deployment cost for typical confidence levels. Moreover, unlike previous work that tends to ignore stochastic dependencies between the shipping demands on the various routes (that are known to exist in the real world), our models account for such dependencies in the most general setting to date. A salient feature of our modeling approach is that the exact dependence structure does not need to be specified, something that is hard, if not simply impossible, to determine in practice. A numerical case study is provided to illustrate the proposed models.

Suggested Citation

  • Ng, ManWo, 2015. "Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 79-87.
  • Handle: RePEc:eee:transb:v:74:y:2015:i:c:p:79-87
    DOI: 10.1016/j.trb.2015.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515000077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bell, Michael G.H. & Liu, Xin & Rioult, Jeremy & Angeloudis, Panagiotis, 2013. "A cost-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 58-70.
    2. ManWo Ng & Hong Lo, 2013. "Regional Air Quality Conformity in Transportation Networks with Stochastic Dependencies: A Theoretical Copula-Based Model," Networks and Spatial Economics, Springer, vol. 13(4), pages 373-397, December.
    3. Qiang Meng & Tingsong Wang, 2010. "A chance constrained programming model for short-term liner ship fleet planning problems," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(4), pages 329-346, July.
    4. Talley, Wayne K. & Ng, ManWo, 2013. "Maritime transport chain choice by carriers, ports and shippers," International Journal of Production Economics, Elsevier, vol. 142(2), pages 311-316.
    5. Gelareh, Shahin & Meng, Qiang, 2010. "A novel modeling approach for the fleet deployment problem within a short-term planning horizon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 76-89, January.
    6. Meng, Qiang & Wang, Tingsong & Wang, Shuaian, 2012. "Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand," European Journal of Operational Research, Elsevier, vol. 223(1), pages 96-105.
    7. Lin, Dung-Ying & Tsai, Yu-Yun, 2014. "The ship routing and freight assignment problem for daily frequency operation of maritime liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 52-70.
    8. Xinxin Liu & Heng-Qing Ye & Xue-Ming Yuan, 2011. "Tactical planning models for managing container flow and ship deployment," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(5), pages 487-508, September.
    9. Ng, ManWo, 2014. "Distribution-free vessel deployment for liner shipping," European Journal of Operational Research, Elsevier, vol. 238(3), pages 858-862.
    10. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Tan, Zhijia, 2013. "Risk management in liner ship fleet deployment: A joint chance constrained programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ng, ManWo, 2014. "Distribution-free vessel deployment for liner shipping," European Journal of Operational Research, Elsevier, vol. 238(3), pages 858-862.
    2. Lai, Xiaofan & Wu, Lingxiao & Wang, Kai & Wang, Fan, 2022. "Robust ship fleet deployment with shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 169-196.
    3. E. Zhang & Feng Chu & Shijin Wang & Ming Liu & Yang Sui, 0. "Approximation approach for robust vessel fleet deployment problem with ambiguous demands," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-15.
    4. Ng, ManWo, 2017. "Revisiting a class of liner fleet deployment models," European Journal of Operational Research, Elsevier, vol. 257(3), pages 773-776.
    5. E. Zhang & Feng Chu & Shijin Wang & Ming Liu & Yang Sui, 2022. "Approximation approach for robust vessel fleet deployment problem with ambiguous demands," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2180-2194, November.
    6. Dong, Jing-Xin & Lee, Chung-Yee & Song, Dong-Ping, 2015. "Joint service capacity planning and dynamic container routing in shipping network with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 404-421.
    7. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    8. Mihaela Bukljaš & Kristijan Rogić & Vladimir Jerebić, 2022. "Distributionally Robust Model and Metaheuristic Frame for Liner Ships Fleet Deployment," Sustainability, MDPI, vol. 14(9), pages 1-18, May.
    9. Fischer, Andreas & Nokhart, Håkon & Olsen, Henrik & Fagerholt, Kjetil & Rakke, Jørgen Glomvik & Stålhane, Magnus, 2016. "Robust planning and disruption management in roll-on roll-off liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 51-67.
    10. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    11. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    12. Zhen, Lu & Hu, Yi & Wang, Shuaian & Laporte, Gilbert & Wu, Yiwei, 2019. "Fleet deployment and demand fulfillment for container shipping liners," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 15-32.
    13. Wang, Shuaian, 2015. "Optimal sequence of container ships in a string," European Journal of Operational Research, Elsevier, vol. 246(3), pages 850-857.
    14. Ng, ManWo & Lin, Dung-Ying, 2018. "Fleet deployment in liner shipping with incomplete demand information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 184-189.
    15. Wang, Shuaian, 2016. "Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 46-55.
    16. Wang, Xin & Fagerholt, Kjetil & Wallace, Stein W., 2018. "Planning for charters: A stochastic maritime fleet composition and deployment problem," Omega, Elsevier, vol. 79(C), pages 54-66.
    17. Zhao, Yue & Chen, Zhi & Lim, Andrew & Zhang, Zhenzhen, 2022. "Vessel deployment with limited information: Distributionally robust chance constrained models," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 197-217.
    18. Ming Liu & Zhongzheng Liu & Rongfan Liu & Lihua Sun, 2022. "Distribution-Free Approaches for an Integrated Cargo Routing and Empty Container Repositioning Problem with Repacking Operations in Liner Shipping Networks," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    19. Wang, Kai & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2017. "Cruise service planning considering berth availability and decreasing marginal profit," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 1-18.
    20. Wang, Shuaian, 2014. "A novel hybrid-link-based container routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 165-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:74:y:2015:i:c:p:79-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.