IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v87y2016icp51-58.html
   My bibliography  Save this article

A study of human mobility behavior dynamics: A perspective of a single vehicle with taxi

Author

Listed:
  • Yao, Can-Zhong
  • Lin, Ji-Nan

Abstract

In this paper, we first research on the distance distribution of human mobility with single vehicle based on the driving data from a taxi company in South China. Different from conventional exponential distribution, we discover the mobility distance with taxi follows power-law distribution. Further, we proposed a model which may explain the mechanism for the power-law distribution: mobility distance is constrained by time and fare. Specifically, the relationship between fare and mobility distance follows piecewise function, and responds to individual sensitivity; the relationship between time and mobility distance follows significant logarithmic relationship. These two factors, especially the logarithmic relationship between time and mobility distance, may contribute to a power-law distribution instead of an exponential one. Finally, with a simulation model, we verify the significant power-law distribution of human mobility behavioral distance with a single vehicle, by supplementing factors of waiting time and fare.

Suggested Citation

  • Yao, Can-Zhong & Lin, Ji-Nan, 2016. "A study of human mobility behavior dynamics: A perspective of a single vehicle with taxi," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 51-58.
  • Handle: RePEc:eee:transa:v:87:y:2016:i:c:p:51-58
    DOI: 10.1016/j.tra.2016.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416000501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    2. Liang, Xiao & Zheng, Xudong & Lv, Weifeng & Zhu, Tongyu & Xu, Ke, 2012. "The scaling of human mobility by taxis is exponential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2135-2144.
    3. Camille Roth & Soong Moon Kang & Michael Batty & Marc Barthélemy, 2011. "Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    4. Yang, Hai & Ye, Min & Tang, Wilson H. & Wong, S.C., 2005. "Regulating taxi services in the presence of congestion externality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 17-40, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Daniel(Jian) & Ding, Xueqing, 2019. "Spatiotemporal evolution of ridesourcing markets under the new restriction policy: A case study in Shanghai," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 227-239.
    2. Rongxiang Su & Zhixiang Fang & Ningxin Luo & Jingwei Zhu, 2018. "Understanding the Dynamics of the Pick-Up and Drop-Off Locations of Taxicabs in the Context of a Subsidy War among E-Hailing Apps," Sustainability, MDPI, vol. 10(4), pages 1-24, April.
    3. Xia, Dawen & Jiang, Shunying & Yang, Nan & Hu, Yang & Li, Yantao & Li, Huaqing & Wang, Lin, 2021. "Discovering spatiotemporal characteristics of passenger travel with mobile trajectory big data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    4. Roya Etminani-Ghasrodashti & Shima Hamidi, 2019. "Individuals’ Demand for Ride-hailing Services: Investigating the Combined Effects of Attitudinal Factors, Land Use, and Travel Attributes on Demand for App-based Taxis in Tehran, Iran," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    5. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Zhang, Xiaohu, 2021. "Beyond expected regularity of aggregate urban mobility: A case study of ridesourcing service," Journal of Transport Geography, Elsevier, vol. 95(C).
    7. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    8. Liu, Zhengying & Zhao, Pengjun & Liu, Qiyang & Cui, Yanzhe & Yang, Yuan & Liu, Juan & Li, Buhui & Li, Jingwei, 2023. "Exploring the spatial characteristics of the human mobility network in rural settings of China's Greater Bay Area," Journal of Transport Geography, Elsevier, vol. 112(C).
    9. Xu Mengqiao & Zhang Ling & Li Wen & Xia Haoxiang, 2017. "Mobility Pattern of Taxi Passengers at Intra-Urban Scale: Empirical Study of Three Cities," Journal of Systems Science and Information, De Gruyter, vol. 5(6), pages 537-555, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    2. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    3. Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2022. "Revealing mobility pattern of taxi movements with its travel trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Zuoxian Gan & Min Yang & Tao Feng & Harry Timmermans, 2020. "Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations," Transportation, Springer, vol. 47(1), pages 315-336, February.
    5. Huo, Jie & Wang, Xu-Ming & Zhao, Ning & Hao, Rui, 2016. "Statistical characteristics of dynamics for population migration driven by the economic interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 123-134.
    6. Yeran Sun & Hongchao Fan & Ming Li & Alexander Zipf, 2016. "Identifying the city center using human travel flows generated from location-based social networking data," Environment and Planning B, , vol. 43(3), pages 480-498, May.
    7. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    8. Li, Xianghua & Guo, Jingyi & Gao, Chao & Zhang, Leyan & Zhang, Zili, 2018. "A hybrid strategy for network immunization," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 214-219.
    9. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    10. Wu, Jianjun & Qu, Yunchao & Sun, Huijun & Yin, Haodong & Yan, Xiaoyong & Zhao, Jiandong, 2019. "Data-driven model for passenger route choice in urban metro network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 787-798.
    11. Tong Zhou & Xintao Liu & Zhen Qian & Haoxuan Chen & Fei Tao, 2019. "Dynamic Update and Monitoring of AOI Entrance via Spatiotemporal Clustering of Drop-Off Points," Sustainability, MDPI, vol. 11(23), pages 1-20, December.
    12. Cai, Hua & Wang, Xi & Adriaens, Peter & Xu, Ming, 2019. "Environmental benefits of taxi ride sharing in Beijing," Energy, Elsevier, vol. 174(C), pages 503-508.
    13. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
    14. Nir Kaplan & Itzhak Omer, 2022. "Multiscale Accessibility—A New Perspective of Space Structuration," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    15. Oshan, Taylor M., 2020. "Potential and pitfalls of big transport data for spatial interaction models of urban mobility," OSF Preprints gwumt, Center for Open Science.
    16. Kimitaka Asatani & Fujio Toriumi & Junichiro Mori & Masanao Ochi & Ichiro Sakata, 2018. "Detecting interpersonal relationships in large-scale railway trip data," Journal of Computational Social Science, Springer, vol. 1(2), pages 313-326, September.
    17. Mi-Kyeong Kim & Sangpil Kim & Hong-Gyoo Sohn, 2018. "Relationship between Spatio-Temporal Travel Patterns Derived from Smart-Card Data and Local Environmental Characteristics of Seoul, Korea," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    18. Deyi Feng & Lingli Tu & Zhongwei Sun, 2019. "Research on Population Spatiotemporal Aggregation Characteristics of a Small City: A Case Study on Shehong County Based on Baidu Heat Maps," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    19. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    20. Shaodong Wang & Yanbin Liu & Wei Zhi & Xihua Wen & Weihua Zhou, 2020. "Discovering Urban Functional Polycentricity: A Traffic Flow-Embedded and Topic Modeling-Based Methodology Framework," Sustainability, MDPI, vol. 12(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:87:y:2016:i:c:p:51-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.