IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v80y2015icp277-287.html
   My bibliography  Save this article

The impact of transit station areas on the travel behaviors of workers in Denver, Colorado

Author

Listed:
  • Kwoka, Gregory J.
  • Boschmann, E. Eric
  • Goetz, Andrew R.

Abstract

Transit development is one planning strategy that seeks to partially overcome limitations of low-density single use car oriented development styles. While many studies focus on how residential proximity to transit influences the travel behaviors of individuals, the effect of workplace proximity to transit is less understood. This paper asks, does working near a light rail transit station influence the travel behaviors of workers differently than workers living near a station? We begin by examining workers’ commute mode based on their residential and workplace proximity to transit station areas. Next, we analyze the ways in which personal travel behaviors differ between those who drive to work and those who do not. The data came from a 2009 travel behavior survey in the Denver, Colorado metropolitan area, which contains 8000 households, 16,000 individuals, and nearly 80,000 trips. We measure sustainable travel behaviors as reduced mileage, reduced number of trips, and increased use of non-car transportation. The results of this study indicate that living near a transit station area by itself does not increase the likelihood of using non-car modes for work commutes. But if the destination (work) is near a transit station area, persons are less likely to drive a car to work. People who both live and work in a transit station area are less likely to use a car and more likely to take non-car modes for both work and non-work (personal) trips. Especially for persons who work near a transit station area, the measures of personal trips and distances show a higher level of mobility for non-car commuters than car commuters – that is, more trips and more distant trips. The use of non-car modes for personal trips is most likely to occur by non-car commuters, regardless of their transit station area relationship.

Suggested Citation

  • Kwoka, Gregory J. & Boschmann, E. Eric & Goetz, Andrew R., 2015. "The impact of transit station areas on the travel behaviors of workers in Denver, Colorado," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 277-287.
  • Handle: RePEc:eee:transa:v:80:y:2015:i:c:p:277-287
    DOI: 10.1016/j.tra.2015.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415002244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Xinyu (Jason) & Schoner, Jessica, 2014. "The influence of light rail transit on transit use: An exploration of station area residents along the Hiawatha line in Minneapolis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 134-143.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Lothlorien Redmond & Patricia Mokhtarian, 2001. "The positive utility of the commute: modeling ideal commute time and relative desired commute amount," Transportation, Springer, vol. 28(2), pages 179-205, May.
    4. Marlon Boarnet, 2011. "A Broader Context for Land Use and Travel Behavior, and a Research Agenda," Journal of the American Planning Association, Taylor & Francis Journals, vol. 77(3), pages 197-213.
    5. Kim, Sungyop & Ulfarsson, Gudmundur F. & Todd Hennessy, J., 2007. "Analysis of light rail rider travel behavior: Impacts of individual, built environment, and crime characteristics on transit access," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 511-522, July.
    6. Lee, Shin S. & Senior, Martyn L., 2013. "Do light rail services discourage car ownership and use? Evidence from Census data for four English cities," Journal of Transport Geography, Elsevier, vol. 29(C), pages 11-23.
    7. Andrew E. G. Jonas & Andrew R. Goetz & Sutapa Bhattacharjee, 2014. "City-regionalism as a Politics of Collective Provision: Regional Transport Infrastructure in Denver, USA," Urban Studies, Urban Studies Journal Limited, vol. 51(11), pages 2444-2465, August.
    8. Yu-Hsin Tsai, 2009. "Impacts of self-selection and transit proximity on commute mode choice: evidence from Taipei rapid transit system," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(4), pages 1073-1094, December.
    9. Lindsey, Marshall & Schofer, Joseph L. & Durango-Cohen, Pablo & Gray, Kimberly A., 2010. "Relationship between proximity to transit and ridership for journey-to-work trips in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 697-709, November.
    10. Cairns, S. & Newson, C. & Davis, A., 2010. "Understanding successful workplace travel initiatives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 473-494, August.
    11. Banister, David, 2011. "Cities, mobility and climate change," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1538-1546.
    12. Cervero, Robert, 1996. "Mixed land-uses and commuting: Evidence from the American Housing Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 361-377, September.
    13. Olaru, Doina & Smith, Brett & Taplin, John H.E., 2011. "Residential location and transit-oriented development in a new rail corridor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(3), pages 219-237, March.
    14. Jessica Guo & Cynthia Chen, 2007. "The built environment and travel behavior: making the connection," Transportation, Springer, vol. 34(5), pages 529-533, September.
    15. Cervero, Robert & Landis, John, 1997. "Twenty years of the Bay Area Rapid Transit system: Land use and development impacts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(4), pages 309-333, July.
    16. Daniel G. Chatman, 2013. "Does TOD Need the T?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 79(1), pages 17-31, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Honghu Sun & Feng Zhen & Yupei Jiang, 2020. "Study on the Characteristics of Urban Residents’ Commuting Behavior and Influencing Factors from the Perspective of Resilience Theory: Theoretical Construction and Empirical Analysis from Nanjing, Chi," IJERPH, MDPI, vol. 17(5), pages 1-17, February.
    2. Cao, Xinyu Jason, 2019. "Examining the effect of the Hiawatha LRT on auto use in the Twin Cities," Transport Policy, Elsevier, vol. 81(C), pages 284-292.
    3. Julio César dos Santos & Paulo Ribeiro & Ricardo Jorge Silva Bento, 2023. "A Review of the Promotion of Sustainable Mobility of Workers by Industries," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    4. Jackson, Sara L. & Buckman, Joshua, 2020. "Light rail development with or without gentrification?: Neighborhood perspectives on changing sense of place in Denver, Colorado," Journal of Transport Geography, Elsevier, vol. 84(C).
    5. Mohammed Ali Berawi & Gunawan Saroji & Fuad Adrian Iskandar & Bernard Elpetino Ibrahim & Perdana Miraj & Mustika Sari, 2020. "Optimizing Land Use Allocation of Transit-Oriented Development (TOD) to Generate Maximum Ridership," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    6. Cheng, Long & Cai, Xinmei & Liu, Zhuo & Huang, Zhiren & Chen, Wendong & Witlox, Frank, 2024. "Characterising travel behaviour patterns of transport hub station area users using mobile phone data," Journal of Transport Geography, Elsevier, vol. 116(C).
    7. Bardaka, Eleni & Delgado, Michael S. & Florax, Raymond J.G.M., 2019. "A spatial multiple treatment/multiple outcome difference-in-differences model with an application to urban rail infrastructure and gentrification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 325-345.
    8. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    9. Choi, Yunkyung & Guhathakurta, Subhrajit, 2024. "Unraveling the diversity in transit-oriented development," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    10. Wang, Jingjing & Lu, Yi & Yang, Yiyang & Peng, Jiandong & Liu, Ye & Yang, Linchuan, 2023. "Influence of a new rail transit line on travel behavior: Evidence from repeated cross-sectional surveys in Hong Kong," Journal of Transport Geography, Elsevier, vol. 106(C).
    11. Shen, Qing & Chen, Peng & Pan, Haixiao, 2016. "Factors affecting car ownership and mode choice in rail transit-supported suburbs of a large Chinese city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 31-44.
    12. Bo Wan & Xudan Zhao & Yuhan Sun & Tao Yang, 2023. "Unraveling the Impact of Spatial Configuration on TOD Function Mix Use and Spatial Intensity: An Analysis of 47 Morning Top-Flow Stations in Beijing (2018–2020)," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    13. Khordagui, Nagwa, 2019. "Parking prices and the decision to drive to work: Evidence from California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 479-495.
    14. Zimny-Schmitt, Daniel & Goetz, Andrew R., 2020. "An investigation of the performance of urban rail transit systems on the corridor level: A comparative analysis in the American west," Journal of Transport Geography, Elsevier, vol. 88(C).
    15. Zhao, Liyuan & Shen, Le, 2019. "The impacts of rail transit on future urban land use development: A case study in Wuhan, China," Transport Policy, Elsevier, vol. 81(C), pages 396-405.
    16. Gang Cheng & Shuzhi Zhao & Di Huang, 2018. "Understanding the Effects of Improving Transportation on Pilgrim Travel Behavior: Evidence from the Lhasa, Tibet, China," Sustainability, MDPI, vol. 10(10), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    2. Huang, Xiaoyan & (Jason) Cao, Xinyu & Yin, Jiangbin & Cao, Xiaoshu, 2019. "Can metro transit reduce driving? Evidence from Xi'an, China," Transport Policy, Elsevier, vol. 81(C), pages 350-359.
    3. Engebretsen, Øystein & Christiansen, Petter & Strand, Arvid, 2017. "Bergen light rail – Effects on travel behaviour," Journal of Transport Geography, Elsevier, vol. 62(C), pages 111-121.
    4. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    5. Enayat Mirzaei & Dominique Mignot, 2021. "An Empirical Analysis of Mode Choice Decision for Utilitarian and Hedonic Trips: Evidence from Iran," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    6. Steven R Gehrke & Kelly J Clifton, 2019. "An activity-related land use mix construct and its connection to pedestrian travel," Environment and Planning B, , vol. 46(1), pages 9-26, January.
    7. De Vos, Jonas & Van Acker, Veronique & Witlox, Frank, 2014. "The influence of attitudes on Transit-Oriented Development: An explorative analysis," Transport Policy, Elsevier, vol. 35(C), pages 326-329.
    8. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    9. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
    10. Shen, Qing & Chen, Peng & Pan, Haixiao, 2016. "Factors affecting car ownership and mode choice in rail transit-supported suburbs of a large Chinese city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 31-44.
    11. Vale, David S., 2013. "Does commuting time tolerance impede sustainable urban mobility? Analysing the impacts on commuting behaviour as a result of workplace relocation to a mixed-use centre in Lisbon," Journal of Transport Geography, Elsevier, vol. 32(C), pages 38-48.
    12. Blanco, Hilda & Wikstrom, Alexander, 2018. "Transit-Oriented Development Opportunities Among Failing Malls," Institute of Transportation Studies, Working Paper Series qt3h62q04h, Institute of Transportation Studies, UC Davis.
    13. Ali Ardeshiri & Akshay Vij, 2019. "A lifestyle-based model of household neighbourhood location and individual travel mode choice behaviours," Papers 1902.01986, arXiv.org, revised Nov 2019.
    14. Cao, Xinyu Jason, 2019. "Examining the effect of the Hiawatha LRT on auto use in the Twin Cities," Transport Policy, Elsevier, vol. 81(C), pages 284-292.
    15. Bautista-Hernández, Dorian Antonio, 2021. "Mode choice in commuting and the built environment in México City. Is there a chance for non-motorized travel?," Journal of Transport Geography, Elsevier, vol. 92(C).
    16. Jason Cao & Alireza Ermagun, 2017. "Influences of LRT on travel behaviour: A retrospective study on movers in Minneapolis," Urban Studies, Urban Studies Journal Limited, vol. 54(11), pages 2504-2520, August.
    17. Zhu, Yi & Diao, Mi, 2016. "The impacts of urban mass rapid transit lines on the density and mobility of high-income households: A case study of Singapore," Transport Policy, Elsevier, vol. 51(C), pages 70-80.
    18. Arefeh Nasri & Carlos Carrion & Lei Zhang & Babak Baghaei, 2020. "Using propensity score matching technique to address self-selection in transit-oriented development (TOD) areas," Transportation, Springer, vol. 47(1), pages 359-371, February.
    19. Jiandong Peng & Jiajie Qi & Changwei Cui & Jinming Yan & Qi Dai & Hong Yang, 2021. "Research on the Impact of the Built Environment on the Characteristics of Metropolis Rail Transit School Commuting—Take Wuhan as an Example," IJERPH, MDPI, vol. 18(18), pages 1-18, September.
    20. Deng, Yiling & Zhao, Pengjun, 2022. "The impact of new metro on travel behavior: Panel analysis using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 46-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:80:y:2015:i:c:p:277-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.