IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v46y2012i9p1490-1505.html
   My bibliography  Save this article

Effects of different factors on drivers’ guidance compliance behaviors under road condition information shown on VMS

Author

Listed:
  • Zhong, Shiquan
  • Zhou, Lizhen
  • Ma, Shoufeng
  • Jia, Ning

Abstract

It is generally accepted that compliance behavior is affected by many factors. The purpose of this study is to investigate the effects of diverse factors on drivers’ guidance compliance behaviors under road condition information shown on graphic variable message sign (VMS), and based on this to find out a better information release mode. The involved data were obtained from questionnaire survey, and ordinal regression was used to analyze the casual relation between guidance compliance behavior and its influencing factors. Based on an overall analysis of conditions in driver’s route choice, an accurate method was proposed to calculate the compliance rate. The model testing information indicated that ordinal regression model with complementary log–log being the link function was appropriate to quantify the relation between the compliance rate and the factors. The estimation results showed that age, driving years, average annual mileage, monthly income, driving style, occupation, the degree of trust in VMS, the familiarity with road network and the route choice style were significant determinants of guidance compliance behavior. This paper also compared two different guidance modes which were ordinary guidance mode (M1) and predicted guidance mode (M2) through simulation. The average speed fluctuations and average travel time supported that M2 had better effect in improving traffic flow and balancing traffic load and resource. Some detailed suggestions of releasing guidance information were proposed with the explanation by flow-density curve and variation of traffic flows. These findings are the foundation to design and improve guidance systems by assessing guidance effect and modifying guidance algorithm.

Suggested Citation

  • Zhong, Shiquan & Zhou, Lizhen & Ma, Shoufeng & Jia, Ning, 2012. "Effects of different factors on drivers’ guidance compliance behaviors under road condition information shown on VMS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1490-1505.
  • Handle: RePEc:eee:transa:v:46:y:2012:i:9:p:1490-1505
    DOI: 10.1016/j.tra.2012.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856412001115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2012.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanafani, A. & Al-Deek, H., 1991. "A simple model for route guidance benefits," Transportation Research Part B: Methodological, Elsevier, vol. 25(4), pages 191-201, August.
    2. Ozbay, Kaan & Bartin, Bekir, 2004. "Estimation Of Economic Impact Of Vms Route Guidance Using Microsimulation," Research in Transportation Economics, Elsevier, vol. 8(1), pages 215-241, January.
    3. Jou, Rong-Chang & Lam, Soi-Hoi & Liu, Yu-Hsin & Chen, Ke-Hong, 2005. "Route switching behavior on freeways with the provision of different types of real-time traffic information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 445-461, June.
    4. Fu, Liping, 2001. "An adaptive routing algorithm for in-vehicle route guidance systems with real-time information," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 749-765, September.
    5. Richard H. M. Emmerink & Peter Nijkamp & Piet Rietveld & Jos N. Van Ommeren & Richard H. M. Emmerink & Peter Nijkamp & Piet Rietveld & Jos N. Van Ommeren, 2004. "Variable Message Signs and Radio Traffic Information: An Integrated Empirical Analysis of Drivers’ Route Choice Behaviour," Chapters, in: Location, Travel and Information Technology, chapter 16, pages 343-361, Edward Elgar Publishing.
    6. Yin, Yafeng & Yang, Hai, 2003. "Simultaneous determination of the equilibrium market penetration and compliance rate of advanced traveler information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 165-181, February.
    7. Yang, Hai & Kitamura, Ryuichi & Jovanis, Paul P. & Vaughn, Kenneth M. & Abdel-aty, Mohammed A. & Reddy, Prasuna Dvg, 1993. "Exploration Of Driver Route Choice With Advanced Traveler Information Using Neural Network Concepts," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt53d2t6df, Institute of Transportation Studies, UC Berkeley.
    8. Papageorgiou, Markos, 1990. "Dynamic modeling, assignment, and route guidance in traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 24(6), pages 471-495, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poulopoulou, Maria & Spyropoulou, Ioanna, 2019. "Active traffic management in urban areas: Is it effective for professional drivers? The case of variable message signs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 412-423.
    2. Quy Nguyen-Phuoc, Duy & An Ngoc Nguyen, Nguyen & Nguyen, Minh Hieu & Ngoc Thi Nguyen, Ly & Oviedo-Trespalacios, Oscar, 2022. "Factors influencing road safety compliance among food delivery riders: An extension of the job demands-resources (JD-R) model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 541-556.
    3. Fernando Romero & Juan Gomez & Thais Rangel & Rafael Jurado-Piña & José Manuel Vassallo, 2020. "The influence of variable message signs on en-route diversion between a toll highway and a free competing alternative," Transportation, Springer, vol. 47(4), pages 1665-1687, August.
    4. Lianzhen Wang & Han Zhang & Lingyun Shi & Qingling He & Huizhi Xu, 2021. "Optimization Model of Regional Traffic Signs for Inducement at Road Works," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    5. Zhao, Wenjing & Ma, Zhuanglin & Yang, Kui & Huang, Helai & Monsuur, Fredrik & Lee, Jaeyoung, 2020. "Impacts of variable message signs on en-route route choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 335-349.
    6. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    7. Timothy C. Matisziw, 2019. "Maximizing Expected Coverage of Flow and Opportunity for Diversion in Networked Systems," Networks and Spatial Economics, Springer, vol. 19(1), pages 199-218, March.
    8. Wang, Jiawen & You, Lan & Hang, Jiayu & Zhao, Jing, 2023. "Pre-trip reservation enabled route guidance and signal control cooperative method for improving network throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongcheng Gan & Xin Ye, 2013. "Investigation of drivers' diversion responses to urban freeway variable message signs displaying freeway and local street travel times," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(8), pages 651-668, December.
    2. Guohui Zhang & Zhong Wang & Khali Persad & C. Walton, 2014. "Enhanced traffic information dissemination to facilitate toll road utilization: a nested logit model of a stated preference survey in Texas," Transportation, Springer, vol. 41(2), pages 231-249, March.
    3. Poulopoulou, Maria & Spyropoulou, Ioanna, 2019. "Active traffic management in urban areas: Is it effective for professional drivers? The case of variable message signs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 412-423.
    4. Richard H. M. Emmerink & Paul van Beek, 1997. "Empirical Analysis of Work Schedule Flexibility: Implications for Road Pricing and Driver Information Systems," Urban Studies, Urban Studies Journal Limited, vol. 34(2), pages 217-234, February.
    5. Emmerink, Richard H. M. & Verhoef, Erik T. & Nijkamp, Peter & Rietveld, Piet, 1998. "Information policy in road transport with elastic demand: Some welfare economic considerations," European Economic Review, Elsevier, vol. 42(1), pages 71-95, January.
    6. Huang, Hai-Jun & Li, Zhi-Chun, 2007. "A multiclass, multicriteria logit-based traffic equilibrium assignment model under ATIS," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1464-1477, February.
    7. Joh, Chang-Hyeon & Lee, Backjin & Bin, Miyoung & Arentze, Theo & Timmermans, Harry, 2011. "Exploring the use of travel information – identifying contextual market segmentation in Seoul, Korea," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1245-1251.
    8. Caspar Chorus & Theo Arentze & Harry Timmermans, 2007. "Information impact on quality of multimodal travel choices: conceptualizations and empirical analyses," Transportation, Springer, vol. 34(6), pages 625-645, November.
    9. Du, Lili & Han, Lanshan & Li, Xiang-Yang, 2014. "Distributed coordinated in-vehicle online routing using mixed-strategy congestion game," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 1-17.
    10. Zhang, Rong & Verhoef, Erik T., 2006. "A monopolistic market for advanced traveller information systems and road use efficiency," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 424-443, June.
    11. Casper G. Chorus & Harry J.P. Timmermans, 2011. "Personal Intelligent Travel Assistants," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 25, Edward Elgar Publishing.
    12. Brownstone, David & McBride, Michael & Kong, Si-Yuan & Mahmassani, Amine, 2017. "Experimental Studies for Traffic Incident Management," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6kx670mv, Institute of Transportation Studies, UC Berkeley.
    13. Lei Zhang & David Levinson, 2006. "Determinants of Route Choice and the Value of Traveler Information," Working Papers 200808, University of Minnesota: Nexus Research Group.
    14. Jinhyun Hong & David Philip McArthur & Mark Livingston, 2019. "Can Accessing the Internet while Travelling Encourage Commuters to Use Public Transport Regardless of Their Attitude?," Sustainability, MDPI, vol. 11(12), pages 1-10, June.
    15. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    16. Rong-Chang Jou & David A. Hensher & Yu-Hsin Liu & Ching-Shu Chiu, 2010. "Urban Commuters’ Mode-switching Behaviour in Taipai, with an Application of the Bounded Rationality Principle," Urban Studies, Urban Studies Journal Limited, vol. 47(3), pages 650-665, March.
    17. Nijkamp, Peter & Reggiani, Aura & Tsang, Wai Fai, 2004. "Comparative modelling of interregional transport flows: Applications to multimodal European freight transport," European Journal of Operational Research, Elsevier, vol. 155(3), pages 584-602, June.
    18. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2005. "A within-day dynamic traffic assignment model for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 1-29, January.
    19. Xinran Li & Haoxuan Kan & Xuedong Hua & Wei Wang, 2020. "Simulation-Based Electric Vehicle Sustainable Routing with Time-Dependent Stochastic Information," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    20. Han, Linghui & Sun, Huijun & Wu, Jianjun & Zhu, Chengjuan, 2011. "Day-to-day evolution of the traffic network with Advanced Traveler Information System," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 914-919.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:46:y:2012:i:9:p:1490-1505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.