IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/123963.html
   My bibliography  Save this paper

Solution Approaches for Vehicle and Crew Scheduling with Electric Buses

Author

Listed:
  • Perumal, S.S.G.
  • Dollevoet, T.A.B.
  • Huisman, D.
  • Lusby, R.M.
  • Larsen, J.
  • Riis, M.

Abstract

The use of electric buses is expected to rise due to its environmental benefits. However, electric vehicles are less exible than conventional diesel buses due to their limited driving range and longer recharging times. Therefore, scheduling electric vehicles adds further operational dificulties. Additionally, various labor regulations challenge public transport companies to find a cost-effcient crew schedule. Vehicle and crew scheduling problems essentially define the cost of operations. In practice, these two problems are often solved sequentially. In this paper, we introduce the integrated electric vehicle and crew scheduling problem (E-VCSP). Given a set of timetabled trips and recharging stations, the E-VCSP is concerned with finding vehicle and crew schedules that cover the timetabled trips and satisfy operational constraints, such as limited driving range of electric vehicles and labor regulations for the crew while minimizing total operational cost. An adaptive large neighborhood search that utilizes branch-and-price heuristics is proposed to tackle the E-VCSP. The proposed method is tested on real-life instances from public transport companies in Denmark and Sweden that contain up to 1,109 timetabled trips. The heuristic approach provides evidence of improving efficiency of transport systems when the electric vehicle and crew scheduling aspects are considered simultaneously. By comparing to the traditional sequential approach, the heuristic finds improvements in the range of 1.17-4.37% on average. A sensitivity analysis of the electric bus technology is carried out to indicate its implications for the crew schedule and the total operational cost. The analysis shows that the operational cost decreases with increasing driving range (120 to 250 kilometers) of electric vehicles.

Suggested Citation

  • Perumal, S.S.G. & Dollevoet, T.A.B. & Huisman, D. & Lusby, R.M. & Larsen, J. & Riis, M., 2020. "Solution Approaches for Vehicle and Crew Scheduling with Electric Buses," Econometric Institute Research Papers EI-2020-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:123963
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/123963/EI-2020-02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2019. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 99-127, Springer.
    2. Jonathan D. Adler & Pitu B. Mirchandani, 2017. "The Vehicle Scheduling Problem for Fleets with Alternative-Fuel Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 441-456, May.
    3. Ingmar Steinzen & Vitali Gintner & Leena Suhl & Natalia Kliewer, 2010. "A Time-Space Network Approach for the Integrated Vehicle- and Crew-Scheduling Problem with Multiple Depots," Transportation Science, INFORMS, vol. 44(3), pages 367-382, August.
    4. Ibarra-Rojas, Omar J. & Giesen, Ricardo & Rios-Solis, Yasmin A., 2014. "An integrated approach for timetabling and vehicle scheduling problems to analyze the trade-off between level of service and operating costs of transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 35-46.
    5. Michael Ball & Lawrence Bodin & Robert Dial, 1983. "A Matching Based Heuristic for Scheduling Mass Transit Crews and Vehicles," Transportation Science, INFORMS, vol. 17(1), pages 4-31, February.
    6. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
    7. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    8. Ahmed Hadjar & Odile Marcotte & François Soumis, 2006. "A Branch-and-Cut Algorithm for the Multiple Depot Vehicle Scheduling Problem," Operations Research, INFORMS, vol. 54(1), pages 130-149, February.
    9. Fonseca, João Paiva & van der Hurk, Evelien & Roberti, Roberto & Larsen, Allan, 2018. "A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 128-149.
    10. Knut Haase & Guy Desaulniers & Jacques Desrosiers, 2001. "Simultaneous Vehicle and Crew Scheduling in Urban Mass Transit Systems," Transportation Science, INFORMS, vol. 35(3), pages 286-303, August.
    11. Desaulniers, Guy & Lavigne, June & Soumis, Francois, 1998. "Multi-depot vehicle scheduling problems with time windows and waiting costs," European Journal of Operational Research, Elsevier, vol. 111(3), pages 479-494, December.
    12. Celso C. Ribeiro & François Soumis, 1994. "A Column Generation Approach to the Multiple-Depot Vehicle Scheduling Problem," Operations Research, INFORMS, vol. 42(1), pages 41-52, February.
    13. Martin Desrochers & François Soumis, 1989. "A Column Generation Approach to the Urban Transit Crew Scheduling Problem," Transportation Science, INFORMS, vol. 23(1), pages 1-13, February.
    14. Dennis Huisman & Richard Freling & Albert P. M. Wagelmans, 2005. "Multiple-Depot Integrated Vehicle and Crew Scheduling," Transportation Science, INFORMS, vol. 39(4), pages 491-502, November.
    15. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    16. Perumal, Shyam S.G. & Larsen, Jesper & Lusby, Richard M. & Riis, Morten & Sørensen, Kasper S., 2019. "A matheuristic for the driver scheduling problem with staff cars," European Journal of Operational Research, Elsevier, vol. 275(1), pages 280-294.
    17. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvo, Matías & Angulo, Gustavo & Klapp, Mathias A., 2021. "An exact solution approach for an electric bus dispatch problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    2. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    3. Jing-Quan Li, 2014. "Transit Bus Scheduling with Limited Energy," Transportation Science, INFORMS, vol. 48(4), pages 521-539, November.
    4. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    5. Shen, Yindong & Xu, Jia & Li, Jingpeng, 2016. "A probabilistic model for vehicle scheduling based on stochastic trip times," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 19-31.
    6. Pan, Hanchuan & Liu, Zhigang & Yang, Lixing & Liang, Zhe & Wu, Qiang & Li, Sijie, 2021. "A column generation-based approach for integrated vehicle and crew scheduling on a single metro line with the fully automatic operation system by partial supervision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    7. Ricard, Léa & Desaulniers, Guy & Lodi, Andrea & Rousseau, Louis-Martin, 2024. "Increasing schedule reliability in the multiple depot vehicle scheduling problem with stochastic travel time," Omega, Elsevier, vol. 127(C).
    8. Peng, Yiyang & Li, Guoyuan & Xu, Min & Chen, Anthony, 2024. "Mixed-fleet operation of battery electric bus and hydrogen bus: Considering limited depot size with flexible refueling processes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    9. Ingmar Steinzen & Vitali Gintner & Leena Suhl & Natalia Kliewer, 2010. "A Time-Space Network Approach for the Integrated Vehicle- and Crew-Scheduling Problem with Multiple Depots," Transportation Science, INFORMS, vol. 44(3), pages 367-382, August.
    10. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    11. Sistig, Hubert Maximilian & Sauer, Dirk Uwe, 2023. "Metaheuristic for the integrated electric vehicle and crew scheduling problem," Applied Energy, Elsevier, vol. 339(C).
    12. Benchimol, Pascal & Desaulniers, Guy & Desrosiers, Jacques, 2012. "Stabilized dynamic constraint aggregation for solving set partitioning problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 360-371.
    13. Stefan Irnich & Guy Desaulniers & Jacques Desrosiers & Ahmed Hadjar, 2010. "Path-Reduced Costs for Eliminating Arcs in Routing and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 297-313, May.
    14. Niu, Huimin & Zhou, Xuesong & Tian, Xiaopeng, 2018. "Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 70-101.
    15. Kirsten Hoffmann & Udo Buscher & Janis Sebastian Neufeld & Felix Tamke, 2017. "Solving Practical Railway Crew Scheduling Problems with Attendance Rates," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 147-159, June.
    16. Markó Horváth & Tamás Kis, 2019. "Computing strong lower and upper bounds for the integrated multiple-depot vehicle and crew scheduling problem with branch-and-price," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 39-67, March.
    17. Perumal, Shyam S.G. & Larsen, Jesper & Lusby, Richard M. & Riis, Morten & Sørensen, Kasper S., 2019. "A matheuristic for the driver scheduling problem with staff cars," European Journal of Operational Research, Elsevier, vol. 275(1), pages 280-294.
    18. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    19. Gkiotsalitis, K. & Iliopoulou, C. & Kepaptsoglou, K., 2023. "An exact approach for the multi-depot electric bus scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 306(1), pages 189-206.
    20. Kulkarni, Sarang & Krishnamoorthy, Mohan & Ranade, Abhiram & Ernst, Andreas T. & Patil, Rahul, 2018. "A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 457-487.

    More about this item

    Keywords

    Public Transportation; Integrated Planning; Column Generation; Adaptive Large Neighborhood Search;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:123963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.