IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v190y2024ics0965856424003343.html
   My bibliography  Save this article

Examining the causal impacts of the built environment on cycling activities using time-series street view imagery

Author

Listed:
  • Ito, Koichi
  • Bansal, Prateek
  • Biljecki, Filip

Abstract

Cycling is vital for sustainable and healthy cities. To encourage such activities, understanding urban bikeability at both detailed and broad spatial scales is crucial. Street view imagery (SVI) offers in-depth insights into how street features influence micro-mobility patterns, but existing studies are mainly correlational. This research utilized historical time-series SVI, cyclist data from London, to discern the causal effects of specific urban features on cyclist numbers. We used propensity score matching to adjust for potential confounding biases and applied the causal forest to estimate the heterogeneity in causal effects. Key findings include: vegetation significantly boosts cycling, slope negatively impacts cycling, and bike lanes positively influence cycling. Moreover, vegetation’s impact on cycling is greater in less populated areas, while bike lanes have a stronger effect in densely populated regions. These findings help prioritize the areas of intervention. By transcending from mere correlations to identifying heterogeneous causal impacts, this study offers invaluable insights for urban planning, underscoring design strategies to enhance cities’ bikeability and sustainability.

Suggested Citation

  • Ito, Koichi & Bansal, Prateek & Biljecki, Filip, 2024. "Examining the causal impacts of the built environment on cycling activities using time-series street view imagery," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003343
    DOI: 10.1016/j.tra.2024.104286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424003343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.