IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v166y2022icp262-284.html
   My bibliography  Save this article

Accessibility of high-speed rail (HSR) stations and HSR–air competition: Evidence from China

Author

Listed:
  • Wu, Shuping
  • Han, Dan

Abstract

Most high-speed rail (HSR) stations in China were built in the urban periphery. This study investigates whether peripheral HSR stations increase the demand for air transportation, a mode of transportation that competes with HSR. We establish a series of novel city-pair level indicators of accessibility of HSR stations using geographical information system (GIS) technology, and adopt an extended difference-in-differences analysis to comprehensively elucidate the effect of HSR station accessibility on parallel air transportation. Based on the data of 581 Chinese air routes from 2003 to 2019, we find that less accessible HSR stations increase passenger traffic and flights on parallel air routes, but do not affect cargo traffic on parallel air routes. Specifically, travel time to/from HSR stations, rather than the physical location of HSR stations, affects the intermodal substitution between HSR and air. Our study indicates that for 1 % decline in the public transport travel time-based station accessibility for a given HSR route, the annual number of passengers on the parallel air route will increase by 809. This effect, which would increase the demand for airline services in the long run, is larger for routes shorter than 1,500 km, routes with airports that serve as bases for low-cost air carriers, and routes connecting hub cities, tourism cities, or cities with advanced economic conditions. Our findings offer new insights into HSR station accessibility and provide policy implications regarding the integration of intra-city public transportation systems with HSR stations.

Suggested Citation

  • Wu, Shuping & Han, Dan, 2022. "Accessibility of high-speed rail (HSR) stations and HSR–air competition: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 262-284.
  • Handle: RePEc:eee:transa:v:166:y:2022:i:c:p:262-284
    DOI: 10.1016/j.tra.2022.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856422002798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Kun & Xia, Wenyi & Zhang, Anming & Zhang, Qiong, 2018. "Effects of train speed on airline demand and price: Theory and empirical evidence from a natural experiment," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 99-130.
    2. Dobruszkes, Frédéric & Dehon, Catherine & Givoni, Moshe, 2014. "Does European high-speed rail affect the current level of air services? An EU-wide analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 461-475.
    3. Shaw, Shih-Lung & Fang, Zhixiang & Lu, Shiwei & Tao, Ran, 2014. "Impacts of high speed rail on railroad network accessibility in China," Journal of Transport Geography, Elsevier, vol. 40(C), pages 112-122.
    4. Ke, Xiao & Chen, Haiqiang & Hong, Yongmiao & Hsiao, Cheng, 2017. "Do China's high-speed-rail projects promote local economy?—New evidence from a panel data approach," China Economic Review, Elsevier, vol. 44(C), pages 203-226.
    5. Nathan Nunn & Nancy Qian, 2011. "The Potato's Contribution to Population and Urbanization: Evidence From A Historical Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(2), pages 593-650.
    6. Dobruszkes, Frédéric, 2011. "High-speed rail and air transport competition in Western Europe: A supply-oriented perspective," Transport Policy, Elsevier, vol. 18(6), pages 870-879, November.
    7. Chen, Zhenhua & Xue, Junbo & Rose, Adam Z. & Haynes, Kingsley E., 2016. "The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 232-245.
    8. Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2016. "Airlines’ reaction to high-speed rail entries: Empirical study of the Northeast Asian market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 532-557.
    9. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," ULB Institutional Repository 2013/152140, ULB -- Universite Libre de Bruxelles.
    10. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2021. "Comparative accessibility of Chinese airports and high-speed railway stations: A high-resolution, yet scalable framework based on open data," Journal of Air Transport Management, Elsevier, vol. 92(C).
    11. Dave Donaldson & Richard Hornbeck, 2016. "Railroads and American Economic Growth: A "Market Access" Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 799-858.
    12. Dong, Lei & Du, Rui & Kahn, Matthew & Ratti, Carlo & Zheng, Siqi, 2021. "“Ghost cities” versus boom towns: Do China's high-speed rail new towns thrive?," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    13. Mi Diao & Yi Zhu & Jiren Zhu, 2017. "Intra-city access to inter-city transport nodes: The implications of high-speed-rail station locations for the urban development of Chinese cities," Urban Studies, Urban Studies Journal Limited, vol. 54(10), pages 2249-2267, August.
    14. Shanker Satyanath & Nico Voigtländer & Hans-Joachim Voth, 2017. "Bowling for Fascism: Social Capital and the Rise of the Nazi Party," Journal of Political Economy, University of Chicago Press, vol. 125(2), pages 478-526.
    15. Hanming Fang & Long Wang & Yang Yang, 2020. "Competition and Quality: Evidence from High-Speed Railways and Airlines," NBER Working Papers 27475, National Bureau of Economic Research, Inc.
    16. Ma, Wenliang & Wang, Qiang & Yang, Hangjun & Zhang, Anming & Zhang, Yahua, 2019. "Effects of Beijing-Shanghai high-speed rail on air travel: Passenger types, airline groups and tacit collusion," Research in Transportation Economics, Elsevier, vol. 74(C), pages 64-76.
    17. Román, Concepción & Espino, Raquel & Martín, Juan Carlos, 2007. "Competition of high-speed train with air transport: The case of Madrid–Barcelona," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 277-284.
    18. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    19. Chang, Yuan & Lei, Shuhua & Teng, Jianjian & Zhang, Jiangxue & Zhang, Lixiao & Xu, Xiao, 2019. "The energy use and environmental emissions of high-speed rail transportation in China: A bottom-up modeling," Energy, Elsevier, vol. 182(C), pages 1193-1201.
    20. Michael P. Donohoe & Hansol Jang & Petro Lisowsky, 2022. "Competitive Externalities of Tax Cuts," Journal of Accounting Research, Wiley Blackwell, vol. 60(1), pages 201-259, March.
    21. Mackiewicz, Andrzej & Ratajczak, Waldemar, 1996. "Towards a new definition of topological accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 30(1), pages 47-79, February.
    22. Junghwa Kim & Yeun-Touh Li & Jan-Dirk Schmöcker, 2019. "Regional heterogeneity in Taiwan HSR demand developments: station accessibility and its effect on usage adoption," European Planning Studies, Taylor & Francis Journals, vol. 27(3), pages 555-573, March.
    23. Liu, Shuli & Wan, Yulai & Zhang, Anming, 2021. "Does high-speed rail development affect airport productivity? Evidence from China and Japan," Transport Policy, Elsevier, vol. 110(C), pages 1-15.
    24. Yatang Lin & Yu Qin & Jing Wu & Mandi Xu, 2021. "Impact of high-speed rail on road traffic and greenhouse gas emissions," Nature Climate Change, Nature, vol. 11(11), pages 952-957, November.
    25. Fu, Xiaowen & Zhang, Anming & Lei, Zheng, 2012. "Will China’s airline industry survive the entry of high-speed rail?," Research in Transportation Economics, Elsevier, vol. 35(1), pages 13-25.
    26. Albalate, Daniel & Fageda, Xavier, 2016. "High speed rail and tourism: Empirical evidence from Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 174-185.
    27. Long, Fenjie & Zheng, Longfei & Song, Zhida, 2018. "High-speed rail and urban expansion: An empirical study using a time series of nighttime light satellite data in China," Journal of Transport Geography, Elsevier, vol. 72(C), pages 106-118.
    28. Emily Oster, 2019. "Unobservable Selection and Coefficient Stability: Theory and Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 187-204, April.
    29. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    30. Hanley, Douglas & Li, Jiancheng & Wu, Mingqin, 2022. "High-speed railways and collaborative innovation," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    31. Wang, Chunan & Jiang, Changmin & Zhang, Anming, 2021. "Effects of Airline Entry on High-Speed Rail," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 242-265.
    32. Frédéric Dobruszkes, 2011. "High-speed rail and air transport competition in Western Europe: A supply-oriented perspective," ULB Institutional Repository 2013/96164, ULB -- Universite Libre de Bruxelles.
    33. Jiao, Jingjuan & Wang, Jiaoe & Zhang, Fangni & Jin, Fengjun & Liu, Wei, 2020. "Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China," Transport Policy, Elsevier, vol. 91(C), pages 1-15.
    34. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    35. Yongtao Li & Bo Yang & Qi Cui, 2019. "The effects of high-speed rail on air passenger transport in China," Applied Economics Letters, Taylor & Francis Journals, vol. 26(9), pages 745-749, May.
    36. Liu, Xueli & Jiang, Chunxia & Wang, Feng & Yao, Shujie, 2021. "The impact of high-speed railway on urban housing prices in China: A network accessibility perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 84-99.
    37. Zhang, Rui & Johnson, Daniel & Zhao, Weiming & Nash, Chris, 2019. "Competition of airline and high-speed rail in terms of price and frequency: Empirical study from China," Transport Policy, Elsevier, vol. 78(C), pages 8-18.
    38. Clewlow, Regina R. & Sussman, Joseph M. & Balakrishnan, Hamsa, 2014. "The impact of high-speed rail and low-cost carriers on European air passenger traffic," Transport Policy, Elsevier, vol. 33(C), pages 136-143.
    39. Albalate, Daniel & Bel, Germà & Fageda, Xavier, 2015. "Competition and cooperation between high-speed rail and air transportation services in Europe," Journal of Transport Geography, Elsevier, vol. 42(C), pages 166-174.
    40. Li, Hongchang & Strauss, Jack & Lu, Liu, 2019. "The impact of high-speed rail on civil aviation in China," Transport Policy, Elsevier, vol. 74(C), pages 187-200.
    41. Diao, Mi, 2018. "Does growth follow the rail? The potential impact of high-speed rail on the economic geography of China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 279-290.
    42. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 720-742, November.
    43. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun & Dunford, Michael, 2014. "Impacts on accessibility of China’s present and future HSR network," Journal of Transport Geography, Elsevier, vol. 40(C), pages 123-132.
    44. Moyano, Amparo & Moya-Gómez, Borja & Gutiérrez, Javier, 2018. "Access and egress times to high-speed rail stations: a spatiotemporal accessibility analysis," Journal of Transport Geography, Elsevier, vol. 73(C), pages 84-93.
    45. James Jixian Wang & Jiang Xu & Jianfeng He, 2013. "Spatial Impacts of High-Speed Railways in China: A Total-Travel-Time Approach," Environment and Planning A, , vol. 45(9), pages 2261-2280, September.
    46. Niu, Fangqu & Xin, Zhongling & Sun, Dongqi, 2021. "Urban land use effects of high-speed railway network in China: A spatial spillover perspective," Land Use Policy, Elsevier, vol. 105(C).
    47. Chen, Zhenhua, 2017. "Impacts of high-speed rail on domestic air transportation in China," Journal of Transport Geography, Elsevier, vol. 62(C), pages 184-196.
    48. Hangjun Yang & Qiong Zhang & Qiang Wang, 2018. "Airline Deregulation, Market Competition, and Impact of High-speed Rail on Airlines in China," Advances in Airline Economics, in: Airline Economics in Asia, volume 7, pages 79-101, Emerald Group Publishing Limited.
    49. Wintoki, M. Babajide & Linck, James S. & Netter, Jeffry M., 2012. "Endogeneity and the dynamics of internal corporate governance," Journal of Financial Economics, Elsevier, vol. 105(3), pages 581-606.
    50. Martínez Sánchez-Mateos, Héctor S. & Givoni, Moshe, 2012. "The accessibility impact of a new High-Speed Rail line in the UK – a preliminary analysis of winners and losers," Journal of Transport Geography, Elsevier, vol. 25(C), pages 105-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    2. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    3. Chen, Zhe & Wang, Zhengli & Jiang, Hai, 2019. "Analyzing the heterogeneous impacts of high-speed rail entry on air travel in China: A hierarchical panel regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 86-98.
    4. Wang, Wei & Sun, Huijun & Wu, Jianjun, 2020. "How does the decision of high-speed rail operator affect social welfare? Considering competition between high-speed rail and air transport," Transport Policy, Elsevier, vol. 88(C), pages 1-15.
    5. Wang, Jiaoe & Huang, Jie & Jing, Yue, 2020. "Competition between high-speed trains and air travel in China: From a spatial to spatiotemporal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 62-78.
    6. Zhu, Feng & Wu, Xu & Cao, Chengxuan, 2021. "High-speed rail and air transport competition under high flight delay conditions in China: A case study of the Beijing-Shanghai corridor," Utilities Policy, Elsevier, vol. 71(C).
    7. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    8. Borsati, Mattia & Albalate, Daniel, 2020. "On the modal shift from motorway to high-speed rail: evidence from Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 145-164.
    9. Duan, Liaoliao & Sun, Weizeng & Zheng, Siqi, 2020. "Transportation network and venture capital mobility: An analysis of air travel and high-speed rail in China," Journal of Transport Geography, Elsevier, vol. 88(C).
    10. Gu, Hongyi & Wan, Yulai, 2020. "Can entry of high-speed rail increase air traffic? Price competition, travel time difference and catchment expansion," Transport Policy, Elsevier, vol. 97(C), pages 55-72.
    11. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    12. Huang, Yan & Zong, Huiming, 2022. "The intercity railway connections in China: A comparative analysis of high-speed train and conventional train services," Transport Policy, Elsevier, vol. 120(C), pages 89-103.
    13. Liu, Xize & Chen, Wendong & Chen, Xuewu & Chen, Jingxu & Cheng, Long, 2023. "Analyzing sustainable competitiveness of inter-city coach from the impact of high-speed railway opening in Jiangsu Province, China," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    14. Zheng, Longfei & Long, Fenjie & Chang, Zheng & Ye, Jingsong, 2019. "Ghost town or city of hope? The spatial spillover effects of high-speed railway stations in China," Transport Policy, Elsevier, vol. 81(C), pages 230-241.
    15. Jiao, Jingjuan & Wang, Jiaoe & Zhang, Fangni & Jin, Fengjun & Liu, Wei, 2020. "Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China," Transport Policy, Elsevier, vol. 91(C), pages 1-15.
    16. Strauss, Jack & Li, Hongchang & Cui, Jinli, 2021. "High-speed Rail's impact on airline demand and air carbon emissions in China," Transport Policy, Elsevier, vol. 109(C), pages 85-97.
    17. Ma, Wenliang & Wang, Qiang & Yang, Hangjun & Zhang, Guoquan & Zhang, Yahua, 2020. "Understanding airline price dispersion in the presence of high-speed rail," Transport Policy, Elsevier, vol. 95(C), pages 93-102.
    18. Chen, Zhenhua, 2017. "Impacts of high-speed rail on domestic air transportation in China," Journal of Transport Geography, Elsevier, vol. 62(C), pages 184-196.
    19. Hong, Seock-Jin & Najmi, Hossein, 2022. "Impact of High-speed rail on air travel demand between Dallas and Houston applying Monte Carlo simulation," Journal of Air Transport Management, Elsevier, vol. 102(C).
    20. Avogadro, Nicolò & Pels, Eric & Redondi, Renato, 2023. "Policy impacts on the propensity to travel by HSR in the Amsterdam – London market," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:166:y:2022:i:c:p:262-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.