IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v155y2022icp179-201.html
   My bibliography  Save this article

The impact of working from home on modal commuting choice response during COVID-19: Implications for two metropolitan areas in Australia

Author

Listed:
  • Hensher, David A.
  • Balbontin, Camila
  • Beck, Matthew J.
  • Wei, Edward

Abstract

The need to recognise and account for the influence of working from home on commuting activity has never been so real as a result of the COVID-19 pandemic. Not only does this change the performance of the transport network, it also means that the way in which transport modellers and planners use models estimated on a typical weekday of travel and expand it up to the week and the year must be questioned and appropriately revised to adjust for the quantum of working from home. Although teleworking is not a new phenomenon, what is new is the ferocity by which it has been imposed on individuals throughout the world, and the expectation that working from home is no longer a temporary phenomenon but one that is likely to continue to some non-marginal extent given its acceptance and revealed preferences from both many employees and employ where working from home makes good sense. This paper formalises the relationship between working from home and commuting by day of the week and time of day for two large metropolitan areas in Australia, Brisbane and Sydney, using a mixed logit choice model, identifying the influences on such choices together with a mapping model between the probability of working from home and socioeconomic and other contextual influences that are commonly used in strategic transport models to predict demand for various modes by location. The findings, based on Wave 3 (approximately 6 months from the initial outbreak of the pandemic) of an ongoing data collection exercise, provide the first formal evidence for Australia in enabling transport planners to adjust their predicted modal shares and overall modal travel activity for the presence of working from home.

Suggested Citation

  • Hensher, David A. & Balbontin, Camila & Beck, Matthew J. & Wei, Edward, 2022. "The impact of working from home on modal commuting choice response during COVID-19: Implications for two metropolitan areas in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 179-201.
  • Handle: RePEc:eee:transa:v:155:y:2022:i:c:p:179-201
    DOI: 10.1016/j.tra.2021.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421002901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barrero, Jose Maria & Bloom, Nick & Davis, Steven J., 2020. "Why Working From Home Will Stick," SocArXiv wfdbe, Center for Open Science.
    2. Balbontin, Camila & Hensher, David A. & Beck, Matthew J. & Giesen, Ricardo & Basnak, Paul & Vallejo-Borda, Jose Agustin & Venter, Christoffel, 2021. "Impact of COVID-19 on the number of days working from home and commuting travel: A cross-cultural comparison between Australia, South America and South Africa," Journal of Transport Geography, Elsevier, vol. 96(C).
    3. Mokhtarian, Patricia L., 1991. "Telecommuting and Travel: State of the Practice, State of the Art," University of California Transportation Center, Working Papers qt4zc486ph, University of California Transportation Center.
    4. Mokhtarian, Patricia L. & Handy, Susan L. & Salomon, Ilan, 1995. "Methodological issues in the estimation of the travel, energy, and air quality impacts of telecommuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(4), pages 283-302, July.
    5. Hopkins, John L. & McKay, Judith, 2019. "Investigating ‘anywhere working’ as a mechanism for alleviating traffic congestion in smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 258-272.
    6. Patricia L Mokhtarian & Gustavo O Collantes & Carsten Gertz, 2004. "Telecommuting, Residential Location, and Commute-Distance Traveled: Evidence from State of California Employees," Environment and Planning A, , vol. 36(10), pages 1877-1897, October.
    7. Kim, Seung-Nam & Choo, Sangho & Mokhtarian, Patricia L., 2015. "Home-based telecommuting and intra-household interactions in work and non-work travel: A seemingly unrelated censored regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 197-214.
    8. Wilton, Robert D. & Páez, Antonio & Scott, Darren M., 2011. "Why do you care what other people think? A qualitative investigation of social influence and telecommuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 269-282, May.
    9. Pengyu Zhu, 2012. "Are telecommuting and personal travel complements or substitutes?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(2), pages 619-639, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen Glackin & Magnus Moglia & Peter Newton, 2022. "Working from Home as a Catalyst for Urban Regeneration," Sustainability, MDPI, vol. 14(19), pages 1-22, October.
    2. João de Abreu e Silva, 2022. "Residential preferences, telework perceptions, and the intention to telework: insights from the Lisbon Metropolitan Area during the COVID‐19 pandemic," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(S1), pages 142-161, November.
    3. Zhu, Siying & Cai, Yutong & Wang, Mengtong & Wang, Hua & Meng, Qiang, 2023. "How will China–Singapore International Land–Sea Trade Corridor affect route choice behaviour? A discrete choice model," Transport Policy, Elsevier, vol. 144(C), pages 11-22.
    4. Li, Zheng & Zeng, Jingjing & Hensher, David A., 2023. "An efficient approach to structural breaks and the case of automobile gasoline consumption in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    5. Hensher, David A. & Beck, Matthew J., 2023. "Exploring how worthwhile the things that you do in life are during COVID-19 and links to well-being and working from home," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    6. Balbontin, Camila & Hensher, David A. & Beck, Matthew J., 2022. "Advanced modelling of commuter choice model and work from home during COVID-19 restrictions in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    7. Magnus Moglia & Stephen Glackin & John L. Hopkins, 2022. "The Working-from-Home Natural Experiment in Sydney, Australia: A Theory of Planned Behaviour Perspective," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    8. Chen, Ruoyu & Zhang, Min & Zhou, Jiangping, 2023. "Jobs-housing relationships before and amid COVID-19: An excess-commuting approach," Journal of Transport Geography, Elsevier, vol. 106(C).
    9. Ioanna Simeli & Georgios Tsekouropoulos & Anastasia Vasileiou & Greta Hoxha, 2023. "Benefits and Challenges of Teleworking for a Sustainable Future: Knowledge Gained through Experience in the Era of COVID-19," Sustainability, MDPI, vol. 15(15), pages 1-30, July.
    10. Mostafa Ghodsi & Mahdad Pourmadadkar & Ali Ardestani & Seyednaser Ghadamgahi & Hao Yang, 2022. "Understanding the Impact of COVID-19 Pandemic on Online Shopping and Travel Behaviour: A Structural Equation Modelling Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    11. Jinjia Liang & Tomio Miwa & Takayuki Morikawa, 2023. "Preferences and Expectations of Japanese Employees toward Telecommuting Frequency in the Post-Pandemic Era," Sustainability, MDPI, vol. 15(16), pages 1-16, August.
    12. Wang, Jinghua & Zhang, Zhao & Lu, Guangquan & Yu, Bin & Zhan, Chengyu & Cai, Jingsong, 2023. "Analyzing multiple COVID-19 outbreak impacts: A case study based on Chinese national air passenger flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    13. Shelat, Sanmay & Cats, Oded & van Cranenburgh, Sander, 2022. "Traveller behaviour in public transport in the early stages of the COVID-19 pandemic in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 357-371.
    14. Xi, Haoning & Li, Qin & Hensher, David A. & Nelson, John D. & Ho, Chinh, 2023. "Quantifying the impact of COVID-19 on travel behavior in different socio-economic segments," Transport Policy, Elsevier, vol. 136(C), pages 98-112.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beck, Matthew J. & Hensher, David A. & Wei, Edward, 2020. "Slowly coming out of COVID-19 restrictions in Australia: Implications for working from home and commuting trips by car and public transport," Journal of Transport Geography, Elsevier, vol. 88(C).
    2. Beck, Matthew J. & Hensher, David A., 2022. "Working from home in Australia in 2020: Positives, negatives and the potential for future benefits to transport and society," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 271-284.
    3. Pengyu Zhu & Liping Wang & Yanpeng Jiang & Jiangping Zhou, 2018. "Metropolitan size and the impacts of telecommuting on personal travel," Transportation, Springer, vol. 45(2), pages 385-414, March.
    4. Balbontin, Camila & Hensher, David A. & Beck, Matthew J., 2024. "The influence of working from home and underlying attitudes on the number of commuting and non-commuting trips by workers during 2020 and 2021 pre- and post-lockdown in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    5. Andrew Hook & Victor Court & Benjamin K Sovacool & Steven Sorrell, 2020. "A Systematic Review of the Energy and Climate Impacts of Teleworking," Working Papers hal-03192905, HAL.
    6. Hensher, David A. & Beck, Matthew J. & Wei, Edward, 2021. "Working from home and its implications for strategic transport modelling based on the early days of the COVID-19 pandemic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 64-78.
    7. Kim, Seung-Nam & Choo, Sangho & Mokhtarian, Patricia L., 2015. "Home-based telecommuting and intra-household interactions in work and non-work travel: A seemingly unrelated censored regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 197-214.
    8. Balbontin, Camila & Hensher, David A. & Beck, Matthew J. & Giesen, Ricardo & Basnak, Paul & Vallejo-Borda, Jose Agustin & Venter, Christoffel, 2021. "Impact of COVID-19 on the number of days working from home and commuting travel: A cross-cultural comparison between Australia, South America and South Africa," Journal of Transport Geography, Elsevier, vol. 96(C).
    9. Nicholas S. Caros & Jinhua Zhao, 2022. "Preparing urban mobility for the future of work," Papers 2201.01321, arXiv.org.
    10. Rafiq, Rezwana & McNally, Michael G. & Sarwar Uddin, Yusuf & Ahmed, Tanjeeb, 2022. "Impact of working from home on activity-travel behavior during the COVID-19 Pandemic: An aggregate structural analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 35-54.
    11. Melo, Patrícia C. & de Abreu e Silva, João, 2017. "Home telework and household commuting patterns in Great Britain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 1-24.
    12. Minh Hieu Nguyen, 2021. "Factors influencing home-based telework in Hanoi (Vietnam) during and after the COVID-19 era," Transportation, Springer, vol. 48(6), pages 3207-3238, December.
    13. de Abreu e Silva, João & Melo, Patrícia C., 2018. "Does home-based telework reduce household total travel? A path analysis using single and two worker British households," Journal of Transport Geography, Elsevier, vol. 73(C), pages 148-162.
    14. Wöhner, Fabienne, 2022. "Work flexibly, travel less? The impact of telework and flextime on mobility behavior in Switzerland," Journal of Transport Geography, Elsevier, vol. 102(C).
    15. Pengyu Zhu, 2013. "Telecommuting, Household Commute and Location Choice," Urban Studies, Urban Studies Journal Limited, vol. 50(12), pages 2441-2459, September.
    16. Ozbilen, Basar & Wang, Kailai & Akar, Gulsah, 2021. "Revisiting the impacts of virtual mobility on travel behavior: An exploration of daily travel time expenditures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 49-62.
    17. Elldér, Erik, 2020. "Telework and daily travel: New evidence from Sweden," Journal of Transport Geography, Elsevier, vol. 86(C).
    18. Georges A. Tanguay & Ugo Lachapelle, 2019. "Potential Impacts of Telecommuting on Transportation Behaviours, Health and Hours Worked in Québec," CIRANO Project Reports 2019rp-07, CIRANO.
    19. Khandker Nurul Habib & Ph. D. & PEng, 2020. "On the Factors Influencing the Choices of Weekly Telecommuting Frequencies of Post-secondary Students in Toronto," Papers 2004.04683, arXiv.org.
    20. Ugo Lachapelle & Georges A Tanguay & Léa Neumark-Gaudet, 2018. "Telecommuting and sustainable travel: Reduction of overall travel time, increases in non-motorised travel and congestion relief?," Urban Studies, Urban Studies Journal Limited, vol. 55(10), pages 2226-2244, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:155:y:2022:i:c:p:179-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.