IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v145y2021icp260-268.html
   My bibliography  Save this article

Generalized noortman and van es’ empty trips model

Author

Listed:
  • Gonzalez-Calderon, Carlos A.
  • Holguín-Veras, José
  • Amaya, Johanna
  • Sánchez-Díaz, Iván
  • Sarmiento, Iván

Abstract

This paper presents a generalized Noortman and Van Es’ empty trips model that considers commodity groups and vehicle types. The model allows the analyst to quantify the contribution of empty trips by the various types of commodities. The model was validated using data collected in Colombia as part of the national Freight Origin-Destination Survey. The results reveal that not all commodities generate empty trips in similar proportions, and commodities that require specialized equipment are the ones with the largest proportion of empty trips generated. Moreover, the results show that the proportions of empty trips generated by a given commodity varies across vehicle types. The key contribution of the model is that it produces more precise estimates of empty trips as it includes the impacts of the cargo type in the generation of empty trips. The proposed model could be used by planners to identify key commodities that could be paired together with equipment that could be repurposed to reduce empty trips in their regions.

Suggested Citation

  • Gonzalez-Calderon, Carlos A. & Holguín-Veras, José & Amaya, Johanna & Sánchez-Díaz, Iván & Sarmiento, Iván, 2021. "Generalized noortman and van es’ empty trips model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 260-268.
  • Handle: RePEc:eee:transa:v:145:y:2021:i:c:p:260-268
    DOI: 10.1016/j.tra.2021.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421000057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holguín-Veras, José & Thorson, Ellen, 2003. "Modeling commercial vehicle empty trips with a first order trip chain model," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 129-148, February.
    2. Hunt, J.D. & Stefan, K.J., 2007. "Tour-based microsimulation of urban commercial movements," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 981-1013, November.
    3. Rolf Moeckel & Rick Donnelly, 2016. "A model for national freight flows, distribution centers, empty trucks and urban truck movements," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(7), pages 693-711, October.
    4. José Holguín-Veras & Ellen Thorson & Juan Zorrilla, 2010. "Commercial Vehicle Empty Trip Models With Variable Zero Order Empty Trip Probabilities," Networks and Spatial Economics, Springer, vol. 10(2), pages 241-259, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David A. Hensher & Edward Wei & Wen Liu & Loan Ho & Chinh Ho, 2023. "Development of a practical aggregate spatial road freight modal demand model system for truck and commodity movements with an application of a distance-based charging regime," Transportation, Springer, vol. 50(3), pages 1031-1071, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David A. Hensher & Edward Wei & Wen Liu & Loan Ho & Chinh Ho, 2023. "Development of a practical aggregate spatial road freight modal demand model system for truck and commodity movements with an application of a distance-based charging regime," Transportation, Springer, vol. 50(3), pages 1031-1071, June.
    2. Alain Bonnafous & Jesus Gonzalez-Feliu & Jean-Louis Routhier, 2013. "An alternative UGM Paradigm to O-D matrices: the FRETURB model," Post-Print halshs-00844652, HAL.
    3. Kalahasthi, Lokesh & Holguín-Veras, José & Yushimito, Wilfredo F., 2022. "A freight origin-destination synthesis model with mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    4. Márquez, Luis & Cantillo, Víctor & Paternina-Arboleda, Carlos D., 2024. "Temporal accessibility and freight generation of agricultural products: An empirical study in Colombia," Research in Transportation Economics, Elsevier, vol. 104(C).
    5. Joseph Chow & Choon Yang & Amelia Regan, 2010. "State-of-the art of freight forecast modeling: lessons learned and the road ahead," Transportation, Springer, vol. 37(6), pages 1011-1030, November.
    6. Takanori Sakai & B. K. Bhavathrathan & André Alho & Tetsuro Hyodo & Moshe Ben-Akiva, 2020. "Commodity flow estimation for a metropolitan scale freight modeling system: supplier selection considering distribution channel using an error component logit mixture model," Transportation, Springer, vol. 47(2), pages 997-1025, April.
    7. Comi, Antonio & Delle Site, Paolo & Filippi, Francesco & Nuzzolo, Agostino, 2012. "Urban Freight Transport Demand Modelling: a State of the Art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 51, pages 1-8.
    8. Chow, Joseph Y.J. & Ritchie, Stephen G. & Jeong, Kyungsoo, 2014. "Nonlinear inverse optimization for parameter estimation of commodity-vehicle-decoupled freight assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 71-91.
    9. Thoen, Sebastiaan & Tavasszy, Lóránt & de Bok, Michiel & Correia, Goncalo & van Duin, Ron, 2020. "Descriptive modeling of freight tour formation: A shipment-based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    10. Zhao, Dongfang & Balusu, Suryaprasanna Kumar & Sheela, Parvathy Vinod & Li, Xiaopeng & Pinjari, Abdul Rawoof & Eluru, Naveen, 2020. "Weight-categorized truck flow estimation: A data-fusion approach and a Florida case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    11. Demissie, Merkebe Getachew & Kattan, Lina, 2022. "Estimation of truck origin-destination flows using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    12. Ruan, Minyan & Lin, Jie (Jane) & Kawamura, Kazuya, 2012. "Modeling urban commercial vehicle daily tour chaining," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1169-1184.
    13. Siripirote, Treerapot & Sumalee, Agachai & Ho, H.W., 2020. "Statistical estimation of freight activity analytics from Global Positioning System data of trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    14. de Jong, Gerard & Kouwenhoven, Marco & Ruijs, Kim & van Houwe, Pieter & Borremans, Dana, 2016. "A time-period choice model for road freight transport in Flanders based on stated preference data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 20-31.
    15. Cho, Joongkoo & Hu, Weihong, 2013. "Network-Based Simulation of Air Pollution Emissions Associated with Truck Operations," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 52(3).
    16. Guido Gentile & Daniele Vigo, 2013. "Movement generation and trip distribution for freight demand modelling applied to city logistics," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-6.
    17. Crainic, Teodor Gabriel & Perboli, Guido & Rosano, Mariangela, 2018. "Simulation of intermodal freight transportation systems: a taxonomy," European Journal of Operational Research, Elsevier, vol. 270(2), pages 401-418.
    18. Joubert, J.W. & Axhausen, K.W., 2011. "Inferring commercial vehicle activities in Gauteng, South Africa," Journal of Transport Geography, Elsevier, vol. 19(1), pages 115-124.
    19. Sonagnon Hounwanou & Natacha Gondran & Jesus Gonzalez-Feliu, 2016. "Retail location and freight flow generation: proposition of a method estimating upstream and downstream movements generated by city center stores and peripheral shopping centers," Post-Print hal-01357008, HAL.
    20. Ellison, Richard B. & Teye, Collins & Hensher, David A., 2017. "Modelling Sydney’s light commercial service vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 79-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:145:y:2021:i:c:p:260-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.