IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v127y2019icp71-85.html
   My bibliography  Save this article

Applying a deep learning approach for transportation safety planning by using high-resolution transportation and land use data

Author

Listed:
  • Cai, Qing
  • Abdel-Aty, Mohamed
  • Sun, Yangyang
  • Lee, Jaeyoung
  • Yuan, Jinghui

Abstract

Analytical Transportation Safety Planning (TSP) is an important concept for integrating and improving both planning and safety and achieving better policies and decision making. In the recent decade, considerable efforts have been devoted to providing better prediction results with the consideration of zonal systems, mathematical methods, input variables, etc. In previous studies, transportation and land use data have been widely used as input to predict crashes. Meanwhile, the previous studies required all input variables to be aggregated at the zonal level. With the aggregation process, the collected data fell into low resolution and lost details, which may introduce low accuracy and even biases. The primary objective of this study is to validate the viability of applying a deep learning approach to predict crashes for TSP with the high-resolution data. A framework of collecting high-resolution data is first introduced. Then, a deep learning architecture of a convolutional neural network (CNN) is adopted to predict traffic crashes. To validate the proposed method, an empirical study is conducted and the proposed method is compared with three counterparts: two statistical models (i.e., negative binomial model and spatial Poisson lognormal model) and a traditional machine learning model (i.e., artificial neural network) using low-resolution data (i.e., data that are aggregated based on zones). The results indicate that the proposed deep learning method with high-resolution data could provide significantly higher prediction accuracy than the three conventional models using low-resolution data, which validates the concept of using the deep learning approach with detailed data for traffic crash prediction. It is expected that the deep learning approach for traffic crash prediction in this study could provide new and valuable insights into the future directions of transportation safety planning.

Suggested Citation

  • Cai, Qing & Abdel-Aty, Mohamed & Sun, Yangyang & Lee, Jaeyoung & Yuan, Jinghui, 2019. "Applying a deep learning approach for transportation safety planning by using high-resolution transportation and land use data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 71-85.
  • Handle: RePEc:eee:transa:v:127:y:2019:i:c:p:71-85
    DOI: 10.1016/j.tra.2019.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418310073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    2. Noland, Robert B. & Smart, Michael J. & Guo, Ziye, 2016. "Bikeshare trip generation in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 164-181.
    3. Abdel-Aty, Mohamed & Lee, Jaeyoung & Siddiqui, Chowdhury & Choi, Keechoo, 2013. "Geographical unit based analysis in the context of transportation safety planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 62-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Peijie & Chen, Tianyi & Diew Wong, Yiik & Meng, Xianghai & Wang, Xueqin & Liu, Wei, 2023. "Exploring key spatio-temporal features of crash risk hot spots on urban road network: A machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    2. Peng, Qiao & Bakkar, Yassine & Wu, Liangpeng & Liu, Weilong & Kou, Ruibing & Liu, Kailong, 2024. "Transportation resilience under Covid-19 Uncertainty: A traffic severity analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    2. Alfonso Montella & Vittorio Marzano & Filomena Mauriello & Roberta Vitillo & Roberto Fasanelli & Mariano Pernetti & Francesco Galante, 2019. "Development of Macro-Level Safety Performance Functions in the City of Naples," Sustainability, MDPI, vol. 11(7), pages 1-21, March.
    3. Lee, Jaeyoung & Abdel-Aty, Mohamed & Jiang, Ximiao, 2014. "Development of zone system for macro-level traffic safety analysis," Journal of Transport Geography, Elsevier, vol. 38(C), pages 13-21.
    4. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    5. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    6. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    7. Jia Guo & Yusak Susilo & Constantinos Antoniou & Anna PernestĂĄl Brenden, 2020. "Influence of Individual Perceptions on the Decision to Adopt Automated Bus Services," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    8. Ghadiri, Mehdi & Rassafi, Amir Abbas & Mirbaha, Babak, 2019. "The effects of traffic zoning with regular geometric shapes on the precision of trip production models," Journal of Transport Geography, Elsevier, vol. 78(C), pages 150-159.
    9. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    10. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    11. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    12. Circella, Giovanni & Alemi, Farzad & Tiedeman, Kate & Handy, Susan & Mokhtarian, Patricia, 2018. "The Adoption of Shared Mobility in California and Its Relationship with Other Components of Travel Behavior," Institute of Transportation Studies, Working Paper Series qt1kq5d07p, Institute of Transportation Studies, UC Davis.
    13. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    14. Ding, Hongliang & Lu, Yuhuan & Sze, N.N. & Li, Haojie, 2022. "Effect of dockless bike-sharing scheme on the demand for London Cycle Hire at the disaggregate level using a deep learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 150-163.
    15. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    16. Wang, Jueyu & Lindsey, Greg, 2019. "Do new bike share stations increase member use: A quasi-experimental study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 1-11.
    17. Milhan Moomen & Amirarsalan Mehrara Molan & Khaled Ksaibati, 2023. "A Random Parameters Multinomial Logit Model Analysis of Median Barrier Crash Injury Severity on Wyoming Interstates," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    18. Chiou, Yu-Chiun & Wu, Kuo-Chi, 2024. "Bikesharing: The first- and last-mile service of public transportation? Evidence from an origin–destination perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    19. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    20. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:127:y:2019:i:c:p:71-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.