IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v121y2019icp346-359.html
   My bibliography  Save this article

Value of demand information in autonomous mobility-on-demand systems

Author

Listed:
  • Wen, Jian
  • Nassir, Neema
  • Zhao, Jinhua

Abstract

Effective management of demand information is a critical factor in the successful operation of autonomous mobility-on-demand (AMoD) systems. This paper classifies, measures and evaluates the demand information for an AMoD system. First, the paper studies demand information at both individual and aggregate levels and measures two critical attributes: dynamism and granularity. We identify the trade-offs between both attributes during the data collection and information inference processes and discuss the compatibility of the AMoD dispatching algorithms with different types of information. Second, the paper assesses the value of demand information through agent-based simulation experiments with the actual road network and travel demand in a major European city, where we assume a single operator monopolizes the AMoD service in the case study area but competes with other transportation modes. The performance of the AMoD system is evaluated from the perspectives of travelers, AMoD operators, and transportation authority in terms of the overall system performance. The paper tests multiple scenarios, combining different information levels, information dynamism, and information granularity, as well as various fleet sizes. Results show that aggregate demand information leads to more served requests, shorter wait time and higher profit through effective rebalancing, especially when supply is high and demand information is spatially granular. Individual demand information from in-advance requests also improves the system performance, the degree of which depends on the spatial disparity of requests and their coupled service priority. By designing hailing policies accordingly, the operator is able to maximize the potential benefits. The paper concludes that the strategic trade-offs of demand information need to be made regarding the information level, information dynamism, and information granularity. It also offers a broader discussion on the benefits and costs of demand information for key stakeholders including the users, the operator, and the society.

Suggested Citation

  • Wen, Jian & Nassir, Neema & Zhao, Jinhua, 2019. "Value of demand information in autonomous mobility-on-demand systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 346-359.
  • Handle: RePEc:eee:transa:v:121:y:2019:i:c:p:346-359
    DOI: 10.1016/j.tra.2019.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418306785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    2. Patrick Jaillet & Michael R. Wagner, 2008. "Generalized Online Routing: New Competitive Ratios, Resource Augmentation, and Asymptotic Analyses," Operations Research, INFORMS, vol. 56(3), pages 745-757, June.
    3. Shen, Yu & Zhang, Hongmou & Zhao, Jinhua, 2018. "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 125-136.
    4. Wee, Bert van & Geurs, Karst & Chorus, Caspar, 2013. "Information, communication, travel behavior and accessibility," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(3), pages 1-16.
    5. A Larsen & O Madsen & M Solomon, 2002. "Partially dynamic vehicle routing—models and algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(6), pages 637-646, June.
    6. David Levinson, 2003. "The Value of Advanced Traveler Information Systems for Route Choice," Working Papers 200307, University of Minnesota: Nexus Research Group.
    7. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    8. Mitrovic-Minic, Snezana & Krishnamurti, Ramesh & Laporte, Gilbert, 2004. "Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 669-685, September.
    9. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    10. Chen Zhong & Michael Batty & Ed Manley & Jiaqiu Wang & Zijia Wang & Feng Chen & Gerhard Schmitt, 2016. "Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
    11. Guido Gentile & Sang Nguyen & Stefano Pallottino, 2005. "Route Choice on Transit Networks with Online Information at Stops," Transportation Science, INFORMS, vol. 39(3), pages 289-297, August.
    12. Brakewood, Candace & Barbeau, Sean & Watkins, Kari, 2014. "An experiment evaluating the impacts of real-time transit information on bus riders in Tampa, Florida," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 409-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Jing & Li, Sen, 2024. "Regulating for-hire autonomous vehicles for an equitable multimodal transportation network," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    2. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    3. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
    3. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    4. Dimitris Bertsimas & Patrick Jaillet, & Sébastien Martin, 2019. "Online Vehicle Routing: The Edge of Optimization in Large-Scale Applications," Operations Research, INFORMS, vol. 67(1), pages 143-162, January.
    5. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    6. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    7. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    8. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    9. María I. Restrepo & Frédéric Semet & Thomas Pocreau, 2019. "Integrated Shift Scheduling and Load Assignment Optimization for Attended Home Delivery," Transportation Science, INFORMS, vol. 53(4), pages 1150-1174, July.
    10. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
    11. Györgyi, Péter & Kis, Tamás, 2019. "A probabilistic approach to pickup and delivery problems with time window uncertainty," European Journal of Operational Research, Elsevier, vol. 274(3), pages 909-923.
    12. Xuhong Cai & Li Jiang & Songhu Guo & Hejiao Huang & Hongwei Du, 2022. "TLHSA and SACA: two heuristic algorithms for two variant VRP models," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2996-3022, November.
    13. Ferrucci, Francesco & Bock, Stefan, 2015. "A general approach for controlling vehicle en-route diversions in dynamic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 76-87.
    14. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    15. Gianpaolo Ghiani & Emanuele Manni & Barrett W. Thomas, 2012. "A Comparison of Anticipatory Algorithms for the Dynamic and Stochastic Traveling Salesman Problem," Transportation Science, INFORMS, vol. 46(3), pages 374-387, August.
    16. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    17. Hugo P. Simão & Jeff Day & Abraham P. George & Ted Gifford & John Nienow & Warren B. Powell, 2009. "An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application," Transportation Science, INFORMS, vol. 43(2), pages 178-197, May.
    18. Zhang, Huili & Tong, Weitian & Xu, Yinfeng & Lin, Guohui, 2015. "The Steiner Traveling Salesman Problem with online edge blockages," European Journal of Operational Research, Elsevier, vol. 243(1), pages 30-40.
    19. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    20. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:121:y:2019:i:c:p:346-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.