IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v118y2018icp581-593.html
   My bibliography  Save this article

Modeling the acceptance of taxi owners and drivers to operate premium electric taxis: Policy insights into improving taxi service quality and reducing air pollution

Author

Listed:
  • Yang, W.H.
  • Wong, R.C.P.
  • Szeto, W.Y.

Abstract

Taxis are the main contributor to the emissions of roadside pollutants and greenhouse gases. Many studies have shown that electrifying the taxi fleet is effective in reducing roadside pollution and carbon footprint. However, high ownership cost of electric taxis, limited driving range, and availability of chargers are constraining their deployment. Government subsidy has been sought for in many applications, yet the required amount can be enormous and remains infeasible in many jurisdictions. To address these issues, electric taxis are proposed to provide premium services and let all stakeholders share the financial input. That is, a higher fare will be charged to the taxi customers for a higher service quality. The taxi drivers with higher incomes will be able to pay more to rent the electric taxis. With an increase of rental income to the taxi owners, fewer financial incentives from the government will be required. This study aims to uncover the factors underpinning how taxi owners and drivers choose between conventional taxis and the proposed premium electric taxis. Stated-preference surveys were conducted in Hong Kong, and two separate binary logistic regression models were calibrated accordingly. It was found that the (subsidized) vehicle purchase price, rental income, and battery lifespan were influential to the owners, while fare income, the rental cost, the access time to chargers, and the range per charge significantly affected taxi drivers’ decisions. An equilibrium model with an iterative solution procedure is proposed to illustrate the interactions between the stakeholders and predict the changes in percentage-of-switch under different policy settings. Policy implications to improve taxi service and reduce roadside emissions and pollution are hence discussed.

Suggested Citation

  • Yang, W.H. & Wong, R.C.P. & Szeto, W.Y., 2018. "Modeling the acceptance of taxi owners and drivers to operate premium electric taxis: Policy insights into improving taxi service quality and reducing air pollution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 581-593.
  • Handle: RePEc:eee:transa:v:118:y:2018:i:c:p:581-593
    DOI: 10.1016/j.tra.2018.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418303707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo, Kin & Ramos, Felipe & Rogo, Rafael, 2017. "Earnings management and annual report readability," Journal of Accounting and Economics, Elsevier, vol. 63(1), pages 1-25.
    2. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan, 2016. "Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco," Transport Policy, Elsevier, vol. 45(C), pages 168-178.
    3. Tommy Carpenter & Andrew Curtis & S. Keshav, 2014. "The return on investment for taxi companies transitioning to electric vehicles," Transportation, Springer, vol. 41(4), pages 785-818, July.
    4. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    5. The Food Industry Center, University of Minnesota, 2017. "The Food Industry Center 2017 Annual Report," Annual Reports 259766, University of Minnesota, The Food Industry Center.
    6. Bonges, Henry A. & Lusk, Anne C., 2016. "Addressing electric vehicle (EV) sales and range anxiety through parking layout, policy and regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 63-73.
    7. Yang, Jie & Dong, Jing & Hu, Liang, 2018. "Design government incentive schemes for promoting electric taxis in China," Energy Policy, Elsevier, vol. 115(C), pages 1-11.
    8. Gao, H. Oliver & Kitirattragarn, Vincent, 2008. "Taxi owners' buying preferences of hybrid-electric vehicles and their implications for emissions in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1064-1073, October.
    9. Wong, R.C.P. & Szeto, W.Y. & Yang, Linchuan & Li, Y.C. & Wong, S.C., 2018. "Public transport policy measures for improving elderly mobility," Transport Policy, Elsevier, vol. 63(C), pages 73-79.
    10. Wong, K.I. & Wong, S.C. & Yang, Hai & Wu, J.H., 2008. "Modeling urban taxi services with multiple user classes and vehicle modes," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 985-1007, December.
    11. Steinhilber, Simone & Wells, Peter & Thankappan, Samarthia, 2013. "Socio-technical inertia: Understanding the barriers to electric vehicles," Energy Policy, Elsevier, vol. 60(C), pages 531-539.
    12. Schaller, Bruce, 2007. "Entry controls in taxi regulation: Implications of US and Canadian experience for taxi regulation and deregulation," Transport Policy, Elsevier, vol. 14(6), pages 490-506, November.
    13. Zou, Yuan & Wei, Shouyang & Sun, Fengchun & Hu, Xiaosong & Shiao, Yaojung, 2016. "Large-scale deployment of electric taxis in Beijing: A real-world analysis," Energy, Elsevier, vol. 100(C), pages 25-39.
    14. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan PhD, 2016. "Just A Better Taxi? A Survey-Based Comparison of Taxis, Transit, and Ridesourcing Services in San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt60v8r346, Institute of Transportation Studies, UC Berkeley.
    15. Frances C. Moore & Delavane B. Diaz, 2015. "Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(2), pages 127-131, February.
    16. Jia, Ning & Li, Liying & Ling, Shuai & Ma, Shoufeng & Yao, Wang, 2018. "Influence of attitudinal and low-carbon factors on behavioral intention of commuting mode choice – A cross-city study in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 108-118.
    17. Zhao, Wei & Xu, Liangjie & Dong, Zhijie Sasha & Qi, Bozhao & Qin, Lingqiao & BinRan,, 2018. "Improving transfer feasibility for older travelers inside high-speed train station," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 302-317.
    18. Wong, R.C.P. & Szeto, W.Y., 2018. "An alternative methodology for evaluating the service quality of urban taxis," Transport Policy, Elsevier, vol. 69(C), pages 132-140.
    19. Frances C. Moore & Delavane B. Diaz, 2015. "Erratum: Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(3), pages 280-280, March.
    20. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Escandon-Barbosa, Diana & Salas-Paramo, Jairo & Meneses-Franco, Ana Isabel & Giraldo- Gonzalez, Carlos, 2021. "Adoption of new technologies in developing countries: The case of autonomous car between Vietnam and Colombia," Technology in Society, Elsevier, vol. 66(C).
    2. Fabien Leurent, 2019. "Microeconomics of a taxi service in a ring-shaped city," Working Papers hal-02047269, HAL.
    3. Luis Oliveira & Arun Ulahannan & Matthew Knight & Stewart Birrell, 2020. "Wireless Charging of Electric Taxis: Understanding the Facilitators and Barriers to Its Introduction," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    4. Shr, Yau-Huo & Chang, Hung-Hao, 2024. "The effects of participating in digital ride-hailing on taxi drivers’ business operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    5. Zhou, Min & Long, Piao & Kong, Nan & Zhao, Lindu & Jia, Fu & Campy, Kathryn S., 2021. "Characterizing the motivational mechanism behind taxi driver’s adoption of electric vehicles for living: Insights from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 134-152.
    6. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2020. "Mandating the use of the electric taxis: The case of Florence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 402-414.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Oliveira & Arun Ulahannan & Matthew Knight & Stewart Birrell, 2020. "Wireless Charging of Electric Taxis: Understanding the Facilitators and Barriers to Its Introduction," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    2. Faghih-Imani, Ahmadreza & Anowar, Sabreena & Miller, Eric J. & Eluru, Naveen, 2017. "Hail a cab or ride a bike? A travel time comparison of taxi and bicycle-sharing systems in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 11-21.
    3. Vignon, Daniel & Yin, Yafeng & Ke, Jintao, 2023. "Regulating the ride-hailing market in the age of uberization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    4. Sun, Daniel(Jian) & Ding, Xueqing, 2019. "Spatiotemporal evolution of ridesourcing markets under the new restriction policy: A case study in Shanghai," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 227-239.
    5. Berkeley, Nigel & Bailey, David & Jones, Andrew & Jarvis, David, 2017. "Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 320-332.
    6. Cetin, Tamer & Deakin, Elizabeth, 2019. "Regulation of taxis and the rise of ridesharing," Transport Policy, Elsevier, vol. 76(C), pages 149-158.
    7. Wang, Xiaolei & Liu, Wei & Yang, Hai & Wang, Dan & Ye, Jieping, 2020. "Customer behavioural modelling of order cancellation in coupled ride-sourcing and taxi markets," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 358-378.
    8. Zhou, Min & Long, Piao & Kong, Nan & Zhao, Lindu & Jia, Fu & Campy, Kathryn S., 2021. "Characterizing the motivational mechanism behind taxi driver’s adoption of electric vehicles for living: Insights from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 134-152.
    9. Zhang, Kenan & Nie, Yu (Marco), 2022. "Mitigating traffic congestion induced by transportation network companies: A policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 96-118.
    10. Aarhaug, Jørgen & Olsen, Silvia, 2018. "Implications of ride-sourcing and self-driving vehicles on the need for regulation in unscheduled passenger transport," Research in Transportation Economics, Elsevier, vol. 69(C), pages 573-582.
    11. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    12. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    13. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    14. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    15. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    16. Fremstad, Anders & Paul, Mark, 2022. "Neoliberalism and climate change: How the free-market myth has prevented climate action," Ecological Economics, Elsevier, vol. 197(C).
    17. Rongrong Xu & Yongxiang Wu & Ming Chen & Xuan Zhang & Wei Wu & Long Tan & Gaoxu Wang & Yi Xu & Bing Yan & Yuedong Xia, 2019. "Calculation of the contribution rate of China’s hydraulic science and technology based on a feedforward neural network," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    18. Ramos-Real, Francisco J. & Ramírez-Díaz, Alfredo & Marrero, Gustavo A. & Perez, Yannick, 2018. "Willingness to pay for electric vehicles in island regions: The case of Tenerife (Canary Islands)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 140-149.
    19. Wadud, Zia, 2020. "The effects of e-ridehailing on motorcycle ownership in an emerging-country megacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 301-312.
    20. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:118:y:2018:i:c:p:581-593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.