IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v103y2017icp235-249.html
   My bibliography  Save this article

Impact of the built environment on the vehicle emission effects of road pricing policies: A simulation case study

Author

Listed:
  • Zhong, Shaopeng
  • Bushell, Max

Abstract

In order to develop a road pricing policy that is effective in reducing vehicle emissions, this paper explores the relationship between road pricing, the urban built environment, and vehicle emissions. Existing studies generally tend to choose a city or an entire region as the research object. For this reason, these kinds of studies can neither analyze the differences in the vehicle emission effects of road charging on regions with different built environment attributes, nor distinguish how different built environment attributes affect the vehicle emission effects of road user charging. To fill in the research gap, this paper focuses on the influences of road charging on the vehicle emissions of regions with different built environment characteristics. In order to achieve the above mentioned goal, this paper first applies a method which combines the land use and transport interaction model with a vehicle emission model to simulate the automobile emissions under different road pricing schemes. Then, using multiple regression analysis, this paper establishes the association between the built environment attributes and the vehicle emissions under different road charging levels. Additionally, using factor analysis and cluster analysis, this research further distinguishes the vehicle emission effects of road pricing based on attributes of the built environment. The results confirmed that road pricing affects vehicle emissions in different regions differently. More importantly, not every region will experience decreases in vehicle emissions after the implementation of a road charging policy. The presence of retail amenities, good street design, and public transportation, the more significant the effect of road pricing in reducing vehicle emissions. Furthermore, a healthy jobs-housing balance is also conducive to the decline of regional automobile emissions as well.

Suggested Citation

  • Zhong, Shaopeng & Bushell, Max, 2017. "Impact of the built environment on the vehicle emission effects of road pricing policies: A simulation case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 235-249.
  • Handle: RePEc:eee:transa:v:103:y:2017:i:c:p:235-249
    DOI: 10.1016/j.tra.2017.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416312009
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2017.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eliasson, Jonas, 2009. "A cost-benefit analysis of the Stockholm congestion charging system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 468-480, May.
    2. Tim Schwanen & Frans M. Dieleman & Martin Dijst, 2004. "The Impact of Metropolitan Structure on Commute Behavior in the Netherlands: A Multilevel Approach," Growth and Change, Wiley Blackwell, vol. 35(3), pages 304-333, September.
    3. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    4. Zahabi, Seyed Amir H. & Miranda-Moreno, Luis & Patterson, Zachary & Barla, Philippe, 2015. "Spatio-temporal analysis of car distance, greenhouse gases and the effect of built environment: A latent class regression analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 1-13.
    5. Johansson-Stenman, Olof, 2006. "Optimal environmental road pricing," Economics Letters, Elsevier, vol. 90(2), pages 225-229, February.
    6. Rizzi, Luis Ignacio & De La Maza, Cristobal, 2017. "The external costs of private versus public road transport in the Metropolitan Area of Santiago, Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 123-140.
    7. May, Anthony D. & Kelly, Charlotte & Shepherd, Simon, 2006. "The principles of integration in urban transport strategies," Transport Policy, Elsevier, vol. 13(4), pages 319-327, July.
    8. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    9. Eliasson, Jonas & Hultkrantz, Lars & Nerhagen, Lena & Rosqvist, Lena Smidfelt, 2009. "The Stockholm congestion - charging trial 2006: Overview of effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(3), pages 240-250, March.
    10. T de la Barra & B Pérez & N Vera, 1984. "TRANUS-J: Putting Large Models into Small Computers," Environment and Planning B, , vol. 11(1), pages 87-101, March.
    11. Coria, Jessica & Bonilla, Jorge & Grundström, Maria & Pleijel, Håkan, 2015. "Air pollution dynamics and the need for temporally differentiated road pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 178-195.
    12. Gibson, Matthew & Carnovale, Maria, 2015. "The effects of road pricing on driver behavior and air pollution," Journal of Urban Economics, Elsevier, vol. 89(C), pages 62-73.
    13. Zhong, Shaopeng & Wang, Shusheng & Jiang, Yao & Yu, Bo & Zhang, Wenhao, 2015. "Distinguishing the land use effects of road pricing based on the urban form attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 44-58.
    14. Tillema, Taede & van Wee, Bert & Ettema, Dick, 2010. "The influence of (toll-related) travel costs in residential location decisions of households: A stated choice approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 785-796, December.
    15. Rotaris, Lucia & Danielis, Romeo & Marcucci, Edoardo & Massiani, Jérôme, 2010. "The urban road pricing scheme to curb pollution in Milan, Italy: Description, impacts and preliminary cost-benefit analysis assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 359-375, June.
    16. Song, Siqi & Diao, Mi & Feng, Chen-Chieh, 2016. "Individual transport emissions and the built environment: A structural equation modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 206-219.
    17. Aguiléra, Anne & Voisin, Marion, 2014. "Urban form, commuting patterns and CO2 emissions: What differences between the municipality’s residents and its jobs?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 243-251.
    18. Zhong, Shaopeng & Bushell, Max, 2017. "Built environment and potential job accessibility effects of road pricing: A spatial econometric perspective," Journal of Transport Geography, Elsevier, vol. 60(C), pages 98-109.
    19. Xinyu Cao & Patricia Mokhtarian & Susan Handy, 2007. "Do changes in neighborhood characteristics lead to changes in travel behavior? A structural equations modeling approach," Transportation, Springer, vol. 34(5), pages 535-556, September.
    20. Handy, Susan & Cao, Xinyu & Mokhtarian, Patricia L., 2005. "Correlation or causality between the built environment and travel behavior? Evidence from Northern California," University of California Transportation Center, Working Papers qt5b76c5kg, University of California Transportation Center.
    21. Xiaoyan Huang & Xiaoshu Cao & Jason Cao, 2016. "The association between transit access and auto ownership: evidence from Guangzhou, China," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(3), pages 269-283, April.
    22. Whitehead, Tim, 2005. "Transport charging interventions and economic activity," Transport Policy, Elsevier, vol. 12(5), pages 451-463, September.
    23. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    24. Theodore Tsekeris & Stefan Voß, 2009. "Design and evaluation of road pricing: state-of-the-art and methodological advances," Netnomics, Springer, vol. 10(1), pages 5-52, April.
    25. Daniel, Joseph I. & Bekka, Khalid, 2000. "The Environmental Impact of Highway Congestion Pricing," Journal of Urban Economics, Elsevier, vol. 47(2), pages 180-215, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Daniel(Jian) & Ding, Xueqing, 2019. "Spatiotemporal evolution of ridesourcing markets under the new restriction policy: A case study in Shanghai," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 227-239.
    2. Chen, Fangxi & Yin, Zhiwei & Ye, Yingwei & Sun, Daniel(Jian), 2020. "Taxi hailing choice behavior and economic benefit analysis of emission reduction based on multi-mode travel big data," Transport Policy, Elsevier, vol. 97(C), pages 73-84.
    3. Zhong, Shaopeng & Jiang, Yu & Nielsen, Otto Anker, 2022. "Lexicographic multi-objective road pricing optimization considering land use and transportation effects," European Journal of Operational Research, Elsevier, vol. 298(2), pages 496-509.
    4. Zhao, Chuyun & Tang, Jinjun & Gao, Wenyuan & Zeng, Yu & Li, Zhitao, 2024. "Many-objective optimization of multi-mode public transportation under carbon emission reduction," Energy, Elsevier, vol. 286(C).
    5. Zhao, Chuyun & Tang, Jinjun & Zeng, Yu & Li, Zhitao & Gao, Fan, 2023. "Understanding the spatio-temporally heterogeneous effects of built environment on urban travel emissions," Journal of Transport Geography, Elsevier, vol. 112(C).
    6. Tan, Yu & Sun, Zhanbo & Zhu, Baichuan & Qin, Ziye & Zhao, Yu & Wang, Xuting, 2024. "Minimize population exposure to vehicle-generated emissions by road pricing," Transport Policy, Elsevier, vol. 148(C), pages 15-30.
    7. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    8. Ying Huang & Yongli Zhang & Feifan Deng & Daiqing Zhao & Rong Wu, 2022. "Impacts of Built-Environment on Carbon Dioxide Emissions from Traffic: A Systematic Literature Review," IJERPH, MDPI, vol. 19(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Shaopeng & Bushell, Max, 2017. "Built environment and potential job accessibility effects of road pricing: A spatial econometric perspective," Journal of Transport Geography, Elsevier, vol. 60(C), pages 98-109.
    2. Wenyue Yang & Shaojian Wang & Xiaoming Zhao, 2018. "Measuring the Direct and Indirect Effects of Neighborhood-Built Environments on Travel-related CO 2 Emissions: A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    3. André de Palma & Shaghayegh Vosough & Robin Lindsey, 2020. "Pricing vehicle emissions and congestion using a dynamic traffic network simulator," THEMA Working Papers 2020-09, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    4. Zhong, Shaopeng & Wang, Shusheng & Jiang, Yao & Yu, Bo & Zhang, Wenhao, 2015. "Distinguishing the land use effects of road pricing based on the urban form attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 44-58.
    5. Ying Huang & Yongli Zhang & Feifan Deng & Daiqing Zhao & Rong Wu, 2022. "Impacts of Built-Environment on Carbon Dioxide Emissions from Traffic: A Systematic Literature Review," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    6. Emine Coruh & Faruk Urak & Abdulbaki Bilgic & Steven T. Yen, 2022. "The role of household demographic factors in shaping transportation spending in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3485-3517, March.
    7. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    8. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    9. Wu, Guoqiang & Hong, Jinhyun, 2022. "An analysis of the role of residential location on the relationships between time spent online and non-mandatory activity-travel time use over time," Journal of Transport Geography, Elsevier, vol. 102(C).
    10. Tae-Hyoung Gim, 2012. "A meta-analysis of the relationship between density and travel behavior," Transportation, Springer, vol. 39(3), pages 491-519, May.
    11. Coria, Jessica & Bonilla, Jorge & Grundström, Maria & Pleijel, Håkan, 2015. "Air pollution dynamics and the need for temporally differentiated road pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 178-195.
    12. Tae-Hyoung Tommy Gim, 2023. "Residential self-selection or socio-ecological interaction? the effects of sociodemographic and attitudinal characteristics on the built environment–travel behavior relationship," Transportation, Springer, vol. 50(4), pages 1347-1398, August.
    13. Jonas De Vos & Long Cheng & Frank Witlox, 2021. "Do changes in the residential location lead to changes in travel attitudes? A structural equation modeling approach," Transportation, Springer, vol. 48(4), pages 2011-2034, August.
    14. Guan, Xiaodong & Wang, Donggen, 2020. "The multiplicity of self-selection: What do travel attitudes influence first, residential location or work place?," Journal of Transport Geography, Elsevier, vol. 87(C).
    15. Cao, Xinyu Jason, 2019. "Examining the effect of the Hiawatha LRT on auto use in the Twin Cities," Transport Policy, Elsevier, vol. 81(C), pages 284-292.
    16. Siqi Song & Chen-Chieh Feng & Mi Diao, 2020. "Vehicle quota control, transport infrastructure investment and vehicle travel: A pseudo panel analysis," Urban Studies, Urban Studies Journal Limited, vol. 57(12), pages 2527-2546, September.
    17. Coria, Jessica & Zhang, Xiao-Bing, 2017. "Optimal environmental road pricing and daily commuting patterns," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 297-314.
    18. Vosough, Shaghayegh & de Palma, André & Lindsey, Robin, 2022. "Pricing vehicle emissions and congestion externalities using a dynamic traffic network simulator," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 1-24.
    19. Van Acker, Véronique & Mulley, Corinne & Ho, Loan, 2019. "Impact of childhood experiences on public transport travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 783-798.
    20. Zhong, Shaopeng & Jiang, Yu & Nielsen, Otto Anker, 2022. "Lexicographic multi-objective road pricing optimization considering land use and transportation effects," European Journal of Operational Research, Elsevier, vol. 298(2), pages 496-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:103:y:2017:i:c:p:235-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.