IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v99y2015icp7-17.html
   My bibliography  Save this article

The influence of pleiotropy between viability and pollen fates on mating system evolution

Author

Listed:
  • Jordan, Crispin Y.

Abstract

Floral displays are functionally and genetically integrated structures, so modifications to display will likely affect multiple fitness components (pleiotropy), including pollen export and self-pollination, and therefore selfing rate. Consequently, the great diversities of floral displays and of mating systems found among angiosperms have likely co-evolved. I extend previous models of mating system evolution to determine how pleiotropy that links viability (e.g., probability of survival to reproduction) and the allocation of pollen for export and selfing affects the evolution of selfing, outcrossing, and in particular, mixed mating. I show that the outcome depends on how pollen shifts from being exported, unused, or used for selfing. Furthermore, pleiotropy that affects viability can explain observations not addressed by previous theory, including the evolution of mixed mating despite high inbreeding depression in the absence of pollen-limitation. Therefore, pleiotropy may play a key role in explaining selfing rates for such species that exhibit otherwise enigmatic mating systems.

Suggested Citation

  • Jordan, Crispin Y., 2015. "The influence of pleiotropy between viability and pollen fates on mating system evolution," Theoretical Population Biology, Elsevier, vol. 99(C), pages 7-17.
  • Handle: RePEc:eee:thpobi:v:99:y:2015:i:c:p:7-17
    DOI: 10.1016/j.tpb.2014.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580914000823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2014.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susan Kalisz & Donna W. Vogler & Kristen M. Hanley, 2004. "Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating," Nature, Nature, vol. 430(7002), pages 884-887, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Della Rocca & Arianna Tagliani & Pietro Milanesi & Matteo Barcella & Silvia Paola Assini, 2023. "Contrasting Response of Mountain Plant-Pollinator Network to Fragmented Semi-Natural Grasslands," Land, MDPI, vol. 12(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:99:y:2015:i:c:p:7-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.