IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v92y2014icp107-117.html
   My bibliography  Save this article

Consequences of asymmetric competition between resident and invasive defoliators: A novel empirically based modelling approach

Author

Listed:
  • Ammunét, Tea
  • Klemola, Tero
  • Parvinen, Kalle

Abstract

Invasive species can have profound effects on a resident community via indirect interactions among community members. While long periodic cycles in population dynamics can make the experimental observation of the indirect effects difficult, modelling the possible effects on an evolutionary time scale may provide the much needed information on the potential threats of the invasive species on the ecosystem. Using empirical data from a recent invasion in northernmost Fennoscandia, we applied adaptive dynamics theory and modelled the long term consequences of the invasion by the winter moth into the resident community. Specifically, we investigated the outcome of the observed short-term asymmetric preferences of generalist predators and specialist parasitoids on the long term population dynamics of the invasive winter moth and resident autumnal moth sharing these natural enemies. Our results indicate that coexistence after the invasion is possible. However, the outcome of the indirect interaction on the population dynamics of the moth species was variable and the dynamics might not be persistent on an evolutionary time scale. In addition, the indirect interactions between the two moth species via shared natural enemies were able to cause asynchrony in the population cycles corresponding to field observations from previous sympatric outbreak areas. Therefore, the invasion may cause drastic changes in the resident community, for example by prolonging outbreak periods of birch-feeding moths, increasing the average population densities of the moths or, alternatively, leading to extinction of the resident moth species or to equilibrium densities of the two, formerly cyclic, herbivores.

Suggested Citation

  • Ammunét, Tea & Klemola, Tero & Parvinen, Kalle, 2014. "Consequences of asymmetric competition between resident and invasive defoliators: A novel empirically based modelling approach," Theoretical Population Biology, Elsevier, vol. 92(C), pages 107-117.
  • Handle: RePEc:eee:thpobi:v:92:y:2014:i:c:p:107-117
    DOI: 10.1016/j.tpb.2013.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580913001470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2013.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Chesson & Jessica J. Kuang, 2008. "The interaction between predation and competition," Nature, Nature, vol. 456(7219), pages 235-238, November.
    2. Rebecca J. Morris & Owen T. Lewis & H. Charles J. Godfray, 2004. "Experimental evidence for apparent competition in a tropical forest food web," Nature, Nature, vol. 428(6980), pages 310-313, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rousselière, Damien & Joly, Iragäel, 2011. "A propos de la capacité à survivre des coopératives : une étude de la relation entre âge et mortalité des organisations coopératives agricoles françaises," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 92(3).
    2. Chesson, Peter & Kuang, Jessica J., 2010. "The storage effect due to frequency-dependent predation in multispecies plant communities," Theoretical Population Biology, Elsevier, vol. 78(2), pages 148-164.
    3. Malard, Julien & Adamowski, Jan & Nassar, Jessica Bou & Anandaraja, Nallusamy & Tuy, Héctor & Melgar-Quiñonez, Hugo, 2020. "Modelling predation: Theoretical criteria and empirical evaluation of functional form equations for predator-prey systems," Ecological Modelling, Elsevier, vol. 437(C).
    4. Ammar Alhmedi & Tim Belien & Dany Bylemans, 2023. "Habitat Modification Alters Food Web Interactions with Focus on Biological Control of Aphids in Apple Orchards," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    5. Kuang, Jessica J. & Chesson, Peter, 2010. "Interacting coexistence mechanisms in annual plant communities: Frequency-dependent predation and the storage effect," Theoretical Population Biology, Elsevier, vol. 77(1), pages 56-70.
    6. Holt, Galen & Chesson, Peter, 2014. "Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants," Theoretical Population Biology, Elsevier, vol. 92(C), pages 36-50.
    7. Yılmaz, Zeynep & Maden, Selahattin & Gökçe, Aytül, 2022. "Dynamics and stability of two predators–one prey mathematical model with fading memory in one predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 526-539.
    8. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    9. Stump, Simon Maccracken & Chesson, Peter, 2015. "Distance-responsive predation is not necessary for the Janzen–Connell hypothesis," Theoretical Population Biology, Elsevier, vol. 106(C), pages 60-70.
    10. Hartvig, Martin & Andersen, Ken Haste, 2013. "Coexistence of structured populations with size-based prey selection," Theoretical Population Biology, Elsevier, vol. 89(C), pages 24-33.
    11. Anderson, Taylor M. & Dragićević, Suzana, 2018. "Network-agent based model for simulating the dynamic spatial network structure of complex ecological systems," Ecological Modelling, Elsevier, vol. 389(C), pages 19-32.
    12. Israel Pagán & Carlos Alonso-Blanco & Fernando García-Arenal, 2009. "Differential Tolerance to Direct and Indirect Density-Dependent Costs of Viral Infection in Arabidopsis thaliana," PLOS Pathogens, Public Library of Science, vol. 5(7), pages 1-10, July.
    13. Masuda, Yoshio & Yamanaka, Yasuhiro & Hirata, Takafumi & Nakano, Hideyuki & Kohyama, Takashi S., 2020. "Inhibition of competitive exclusion due to phytoplankton dispersion: a contribution for solving Hutchinson's paradox," Ecological Modelling, Elsevier, vol. 430(C).
    14. Charles K Fisher & Pankaj Mehta, 2014. "Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    15. Park, Junpyo, 2018. "Balancedness among competitions for biodiversity in the cyclic structured three species system," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 425-436.
    16. Kelly, Colleen K. & Bowler, Michael G., 2009. "Investigating the role of enemies in temporal dynamics: Differential sensitivity, competition and stable coexistence," Theoretical Population Biology, Elsevier, vol. 76(4), pages 278-284.
    17. Kubyana, Mmatlou S. & Landi, Pietro & Hui, Cang, 2024. "Adaptive rock-paper-scissors game enhances eco-evolutionary performance at cost of dynamic stability," Applied Mathematics and Computation, Elsevier, vol. 468(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:92:y:2014:i:c:p:107-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.