IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v77y2010i1p49-55.html
   My bibliography  Save this article

Evolutionary consequences of a search image

Author

Listed:
  • van Leeuwen, E.
  • Jansen, V.A.A.

Abstract

Many predators are able to become better at spotting cryptic prey by recognising specific clues, but by concentrating on one prey type they will become worse at spotting other prey types. This phenomenon is known as the formation of a search image for a certain prey by a predator and is related to apostatic selection. Here, we study the evolution of a search image in the predator by formulating and analysing a mathematical model. The predator forages for two prey types and is able to form an independent search image for both prey. The results show that the evolutionary dynamics can be divided into two parts: a fast and a slow part. At first selection pressure will be strong towards a stable ratio of prey, which is the same as the ratio found for the unbeatable prey choice for predators with a Holling type II functional response. Following this, the slow dynamics will keep this ratio constant independent of the trait values, but the predator will slowly evolve towards a stronger search image and ultimately become a specialist predator or slowly evolve towards generalist with a weak search image. In conclusion, the formation of a search image causes the predator to control the prey densities such that the ratio of available prey is kept constant by the predator.

Suggested Citation

  • van Leeuwen, E. & Jansen, V.A.A., 2010. "Evolutionary consequences of a search image," Theoretical Population Biology, Elsevier, vol. 77(1), pages 49-55.
  • Handle: RePEc:eee:thpobi:v:77:y:2010:i:1:p:49-55
    DOI: 10.1016/j.tpb.2009.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580909001257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2009.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Křivan, Vlastimil & Cressman, Ross & Schneider, Candace, 2008. "The ideal free distribution: A review and synthesis of the game-theoretic perspective," Theoretical Population Biology, Elsevier, vol. 73(3), pages 403-425.
    2. U. Dieckmann & R. Law, 1996. "The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes," Working Papers wp96001, International Institute for Applied Systems Analysis.
    3. Alan B. Bond & Alan C. Kamil, 2002. "Visual predators select for crypticity and polymorphism in virtual prey," Nature, Nature, vol. 415(6872), pages 609-613, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frølich, Emil F. & Thygesen, Uffe H., 2022. "Solving multispecies population games in continuous space and time," Theoretical Population Biology, Elsevier, vol. 146(C), pages 36-45.
    2. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    3. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    4. Cressman, Ross & Hofbauer, Josef & Riedel, Frank, 2005. "Stability of the Replicator Equation for a Single-Species with a Multi-Dimensional Continuous Trait Space," Bonn Econ Discussion Papers 12/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    5. de Villemereuil, Pierre B. & López-Sepulcre, Andrés, 2011. "Consumer functional responses under intra- and inter-specific interference competition," Ecological Modelling, Elsevier, vol. 222(3), pages 419-426.
    6. Peña, Jorge & González-Forero, Mauricio, 2020. "Eusociality through conflict dissolution via maternal reproductive specialization," IAST Working Papers 20-110, Institute for Advanced Study in Toulouse (IAST).
    7. U. Dieckmann & M. Doebeli, 1999. "On the Origin of Species by Sympatric Speciation," Working Papers ir99013, International Institute for Applied Systems Analysis.
    8. Hammerstein, Peter & Leimar, Olof, 2015. "Evolutionary Game Theory in Biology," Handbook of Game Theory with Economic Applications,, Elsevier.
    9. Hernán Darío Toro-Zapata & Gerard Olivar-Tost, 2018. "Mathematical Model For The Evolutionary Dynamic Of Innovation In City Public Transport Systems," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 7(2), pages 77-98.
    10. Amit Vutha & Martin Golubitsky, 2015. "Normal Forms and Unfoldings of Singular Strategy Functions," Dynamic Games and Applications, Springer, vol. 5(2), pages 180-213, June.
    11. Meng, Xin-zhu & Zhao, Sheng-nan & Zhang, Wen-yan, 2015. "Adaptive dynamics analysis of a predator–prey model with selective disturbance," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 946-958.
    12. Dercole, Fabio & Della Rossa, Fabio, 2017. "A deterministic eco-genetic model for the short-term evolution of exploited fish stocks," Ecological Modelling, Elsevier, vol. 343(C), pages 80-100.
    13. Lindh, Magnus & Manzoni, Stefano, 2021. "Plant evolution along the ‘fast–slow’ growth economics spectrum under altered precipitation regimes," Ecological Modelling, Elsevier, vol. 448(C).
    14. Horan, Richard D. & Shogren, Jason F. & Bulte, Erwin H., 2011. "Joint determination of biological encephalization, economic specialization," Resource and Energy Economics, Elsevier, vol. 33(2), pages 426-439, May.
    15. Jack W. Bradbury & Sandra L. Vehrencamp & Kenneth E. Clifton, 2015. "The ideal free antelope: foraging dispersions," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(5), pages 1303-1313.
    16. M. Doebeli & U. Dieckmann, 2000. "Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions," Working Papers ir00040, International Institute for Applied Systems Analysis.
    17. Ross Cressman, 2009. "Continuously stable strategies, neighborhood superiority and two-player games with continuous strategy space," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(2), pages 221-247, June.
    18. Klauschies, Toni & Coutinho, Renato Mendes & Gaedke, Ursula, 2018. "A beta distribution-based moment closure enhances the reliability of trait-based aggregate models for natural populations and communities," Ecological Modelling, Elsevier, vol. 381(C), pages 46-77.
    19. Joanna R Hall & Roland Baddeley & Nicholas E Scott-Samuel & Adam J Shohet & Innes C Cuthill, 2017. "Camouflaging moving objects: crypsis and masquerade," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1248-1255.
    20. Kortessis, Nicholas & Chesson, Peter, 2021. "Character displacement in the presence of multiple trait differences: Evolution of the storage effect in germination and growth," Theoretical Population Biology, Elsevier, vol. 140(C), pages 54-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:77:y:2010:i:1:p:49-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.