IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v73y2008i2p307-316.html
   My bibliography  Save this article

On the evolution of epistasis III: The haploid case with mutation

Author

Listed:
  • Liberman, Uri
  • Feldman, Marcus

Abstract

Whether interaction between genes is better represented by synergistic or antagonistic epistasis has been a focus of experimental research in bacterial population genetics. Our previous research on evolution of modifiers of epistasis in diploid systems has indicated that the strength of positive or negative epistasis should increase provided linkage disequilibrium is maintained. Here we study a modifier of epistasis in fitness between two loci in a haploid system. Epistasis is modified in the neighborhood of a mutation–selection balance. We show that when linkage in the three-locus system is tight, an increase in the frequency of a modifier allele that induces either more negative or more positive epistasis is possible. Epistasis here can be measured on either an additive or multiplicative scale.

Suggested Citation

  • Liberman, Uri & Feldman, Marcus, 2008. "On the evolution of epistasis III: The haploid case with mutation," Theoretical Population Biology, Elsevier, vol. 73(2), pages 307-316.
  • Handle: RePEc:eee:thpobi:v:73:y:2008:i:2:p:307-316
    DOI: 10.1016/j.tpb.2007.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058090700130X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2007.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santiago F. Elena & Richard E. Lenski, 1997. "Test of synergistic interactions among deleterious mutations in bacteria," Nature, Nature, vol. 390(6658), pages 395-398, November.
    2. Richard E. Lenski & Charles Ofria & Travis C. Collier & Christoph Adami, 1999. "Genome complexity, robustness and genetic interactions in digital organisms," Nature, Nature, vol. 400(6745), pages 661-664, August.
    3. Ricardo B. R. Azevedo & Rolf Lohaus & Suraj Srinivasan & Kristen K. Dang & Christina L. Burch, 2006. "Sexual reproduction selects for robustness and negative epistasis in artificial gene networks," Nature, Nature, vol. 440(7080), pages 87-90, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Beltrán Del Río & Christopher R. Stephens & David A. Rosenblueth, 2015. "Fitness Landscape Epistasis And Recombination," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-38, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clark, James R. & Daines, Stuart J. & Lenton, Timothy M. & Watson, Andrew J. & Williams, Hywel T.P., 2011. "Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters," Ecological Modelling, Elsevier, vol. 222(23), pages 3823-3837.
    2. Manuel Beltrán Del Río & Christopher R. Stephens & David A. Rosenblueth, 2015. "Fitness Landscape Epistasis And Recombination," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-38, November.
    3. Javier Santos-Moreno & Eve Tasiudi & Hadiastri Kusumawardhani & Joerg Stelling & Yolanda Schaerli, 2023. "Robustness and innovation in synthetic genotype networks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    5. MacPherson, Brian & Gras, Robin, 2016. "Individual-based ecological models: Adjunctive tools or experimental systems?," Ecological Modelling, Elsevier, vol. 323(C), pages 106-114.
    6. Andreas Wagner, 2001. "Estimating Coarse Gene Network Structure from Large-Scale Gene Perturbation Data," Working Papers 01-09-051, Santa Fe Institute.
    7. Miguel A Fortuna & Luis Zaman & Charles Ofria & Andreas Wagner, 2017. "The genotype-phenotype map of an evolving digital organism," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.
    8. Campos, Paulo R.A. & de Oliveira, Viviane M. & Rosas, Alexandre, 2010. "Epistasis and environmental heterogeneity in the speciation process," Ecological Modelling, Elsevier, vol. 221(21), pages 2546-2554.
    9. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    10. Peacor, Scott D. & Allesina, Stefano & Riolo, Rick L. & Hunter, Tim S., 2007. "A new computational system, DOVE (Digital Organisms in a Virtual Ecosystem), to study phenotypic plasticity and its effects in food webs," Ecological Modelling, Elsevier, vol. 205(1), pages 13-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:73:y:2008:i:2:p:307-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.