IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v73y2008i1p63-78.html
   My bibliography  Save this article

Simultaneous effects of food limitation and inducible resistance on herbivore population dynamics

Author

Listed:
  • Abbott, Karen C.
  • Morris, William F.
  • Gross, Kevin

Abstract

Many herbivore populations fluctuate temporally, but the causes of those fluctuations remain unclear. Plant inducible resistance can theoretically cause herbivore population fluctuations, because herbivory may induce plant changes that reduce the survival or reproduction of later-feeding herbivores. Herbivory can also simply reduce the quantity of food available for later feeders and this, too, can cause population fluctuations. Inducible resistance and food limitation often occur simultaneously, yet whether they jointly facilitate or suppress herbivore fluctuations remains largely unexplored. We present models that suggest that food limitation and inducible resistance may have synergistic effects on herbivore population dynamics. The population-level response of the food plant to herbivory and the details of how inducible resistance affects herbivore performance both influence the resulting herbivore dynamics. Our results identify some biological properties of plant–herbivore systems that might determine whether or not cycles occur, and suggest that future empirical and theoretical population dynamics studies should account for the effects of both food limitation and inducible resistance.

Suggested Citation

  • Abbott, Karen C. & Morris, William F. & Gross, Kevin, 2008. "Simultaneous effects of food limitation and inducible resistance on herbivore population dynamics," Theoretical Population Biology, Elsevier, vol. 73(1), pages 63-78.
  • Handle: RePEc:eee:thpobi:v:73:y:2008:i:1:p:63-78
    DOI: 10.1016/j.tpb.2007.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580907001025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2007.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greg Dwyer & Jonathan Dushoff & Susan Harrell Yee, 2004. "The combined effects of pathogens and predators on insect outbreaks," Nature, Nature, vol. 430(6997), pages 341-345, July.
    2. W. W. Murdoch & B. E. Kendall & R. M. Nisbet & C. J. Briggs & E. McCauley & R. Bolser, 2002. "Single-species models for many-species food webs," Nature, Nature, vol. 417(6888), pages 541-543, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cobbold, Christina A. & Roland, Jens & Lewis, Mark A., 2009. "The impact of parasitoid emergence time on host–parasitoid population dynamics," Theoretical Population Biology, Elsevier, vol. 75(2), pages 201-215.
    2. Wu, Haoran, 2024. "ecode: An R package to investigate community dynamics in ordinary differential equation systems," Ecological Modelling, Elsevier, vol. 491(C).
    3. Roy, Manojit & Holt, Robert D., 2008. "Effects of predation on host–pathogen dynamics in SIR models," Theoretical Population Biology, Elsevier, vol. 73(3), pages 319-331.
    4. Pfaff, T. & Brechtel, A. & Drossel, B. & Guill, C., 2014. "Single generation cycles and delayed feedback cycles are not separate phenomena," Theoretical Population Biology, Elsevier, vol. 98(C), pages 38-47.
    5. Eduardo V. Trumper & Arianne J. Cease & María Marta Cigliano & Fernando Copa Bazán & Carlos E. Lange & Héctor E. Medina & Rick P. Overson & Clara Therville & Martina E. Pocco & Cyril Piou & Gustavo Za, 2022. "A Review of the Biology, Ecology, and Management of the South American Locust, Schistocerca cancellata (Serville, 1838), and Future Prospects," Post-Print hal-03880605, HAL.
    6. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    7. Colon, C. & Claessen, D. & Ghil, M., 2015. "Bifurcation analysis of an agent-based model for predator–prey interactions," Ecological Modelling, Elsevier, vol. 317(C), pages 93-106.
    8. Debasis Mukherjee, 2022. "Stochastic Analysis of an Eco-Epidemic Model with Biological Control," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2539-2555, December.
    9. Nisbet, Roger M. & Martin, Benjamin T. & de Roos, Andre M., 2016. "Integrating ecological insight derived from individual-based simulations and physiologically structured population models," Ecological Modelling, Elsevier, vol. 326(C), pages 101-112.
    10. Sylvie Geisendorf & Christian Klippert, 2022. "Integrated sustainability policy assessment – an agent-based ecological-economic model," Journal of Evolutionary Economics, Springer, vol. 32(3), pages 1017-1048, July.
    11. Juan Segura & Frank M Hilker & Daniel Franco, 2017. "Population control methods in stochastic extinction and outbreak scenarios," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:73:y:2008:i:1:p:63-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.