IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v134y2020icp77-91.html
   My bibliography  Save this article

Randomized matrix games in a finite population: Effect of stochastic fluctuations in the payoffs on the evolution of cooperation

Author

Listed:
  • Li, Cong
  • Lessard, Sabin

Abstract

A diffusion approximation for a randomized 2 × 2-matrix game in a large finite population is ascertained in the case of random payoffs whose expected values, variances and covariances are of order given by the inverse of the population size N. Applying the approximation to a Randomized Prisoner’s Dilemma (RPD) with independent payoffs for cooperation and defection in random pairwise interactions, conditions on the variances of the payoffs for selection to favor the evolution of cooperation, favor more the evolution of cooperation than the evolution of defection, and disfavor the evolution of defection are deduced. All these are obtained from probabilities of ultimate fixation of a single mutant. It is shown that the conditions are lessened with an increase in the variances of the payoffs for defection against cooperation and defection and a decrease in the variances of the payoffs for cooperation against cooperation and defection. A RPD game with independent payoffs whose expected values are additive is studied in detail to support the conclusions. Randomized matrix games with non-independent payoffs, namely the RPD game with additive payoffs for cooperation and defection based on random cost and benefit for cooperation and the repeated RPD game with Tit-for-Tat and Always-Defect as strategies in pairwise interactions with a random number of rounds, are studied under the assumption that the population-scaled expected values, variances and covariances of the payoffs are all of the same small enough order. In the first model, the conditions in favor of the evolution of cooperation hold only if the covariance between the cost and the benefit is large enough, while the analysis of the second model extends the results on the effects of the variances of the payoffs for cooperation and defection found for the one-round RPD game.

Suggested Citation

  • Li, Cong & Lessard, Sabin, 2020. "Randomized matrix games in a finite population: Effect of stochastic fluctuations in the payoffs on the evolution of cooperation," Theoretical Population Biology, Elsevier, vol. 134(C), pages 77-91.
  • Handle: RePEc:eee:thpobi:v:134:y:2020:i:c:p:77-91
    DOI: 10.1016/j.tpb.2020.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580920300368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2020.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drew Fudenberg & David G. Rand & Anna Dreber, 2012. "Slow to Anger and Fast to Forgive: Cooperation in an Uncertain World," American Economic Review, American Economic Association, vol. 102(2), pages 720-749, April.
    2. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    3. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    4. Philippe Uyttendaele & Frank Thuijsman & Pieter Collins & Ralf Peeters & Gijs Schoenmakers & Ronald Westra, 2012. "Evolutionary Games and Periodic Fitness," Dynamic Games and Applications, Springer, vol. 2(3), pages 335-345, September.
    5. Christian Hilbe & Štěpán Šimsa & Krishnendu Chatterjee & Martin A. Nowak, 2018. "Evolution of cooperation in stochastic games," Nature, Nature, vol. 559(7713), pages 246-249, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kroumi, Dhaker & Martin, Éloi & Lessard, Sabin, 2022. "Evolution of cooperation with respect to fixation probabilities in multi-player games with random payoffs," Theoretical Population Biology, Elsevier, vol. 145(C), pages 1-21.
    2. Qian, Jia-Li & Zhou, Yin-Xiang & Hao, Qing-Yi, 2024. "The emergence of cooperative behavior based on random payoff and heterogeneity of concerning social image," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Dhaker Kroumi & Éloi Martin & Cong Li & Sabin Lessard, 2021. "Effect of Variability in Payoffs on Conditions for the Evolution of Cooperation in a Small Population," Dynamic Games and Applications, Springer, vol. 11(4), pages 803-834, December.
    4. Lessard, Sabin & Li, Cong & Zheng, Xiu-Deng & Tao, Yi, 2021. "Inclusive fitness and Hamilton’s rule in a stochastic environment," Theoretical Population Biology, Elsevier, vol. 142(C), pages 91-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianwei & Xu, Wenshu & Yu, Fengyuan & He, Jialu & Chen, Wei & Dai, Wenhui, 2024. "Evolution of cooperation under corrupt institutions," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    2. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Cheng, Jiangjiang & Mei, Wenjun & Su, Wei & Chen, Ge, 2023. "Evolutionary games on networks: Phase transition, quasi-equilibrium, and mathematical principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    4. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Inter-group selection of strategy promotes cooperation in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    5. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    7. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    8. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    9. Lessard, Sabin & Lahaie, Philippe, 2009. "Fixation probability with multiple alleles and projected average allelic effect on selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 266-277.
    10. He, Jialu & Cui, Lei, 2024. "The persistence-based game transition resolves the social dilemma," Applied Mathematics and Computation, Elsevier, vol. 477(C).
    11. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    12. Wakano, Joe Yuichiro & Ohtsuki, Hisashi & Kobayashi, Yutaka, 2013. "A mathematical description of the inclusive fitness theory," Theoretical Population Biology, Elsevier, vol. 84(C), pages 46-55.
    13. Dimitris Iliopoulos & Arend Hintze & Christoph Adami, 2010. "Critical Dynamics in the Evolution of Stochastic Strategies for the Iterated Prisoner's Dilemma," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-8, October.
    14. Quan, Ji & Chen, Xinyue & Wang, Xianjia, 2024. "Repeated prisoner's dilemma games in multi-player structured populations with crosstalk," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    15. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    16. Wang, Xianjia & Yang, Zhipeng & Liu, Yanli & Chen, Guici, 2023. "A reinforcement learning-based strategy updating model for the cooperative evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    17. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    18. Zhang, Huanren, 2018. "Errors can increase cooperation in finite populations," Games and Economic Behavior, Elsevier, vol. 107(C), pages 203-219.
    19. Maria Kleshnina & Christian Hilbe & Štěpán Šimsa & Krishnendu Chatterjee & Martin A. Nowak, 2023. "The effect of environmental information on evolution of cooperation in stochastic games," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Feng, Tian-Jiao & Fan, Song-Jia & Li, Cong & Tao, Yi & Zheng, Xiu-Deng, 2023. "Noise-induced sustainability of cooperation in Prisoner's Dilemma game," Applied Mathematics and Computation, Elsevier, vol. 438(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:134:y:2020:i:c:p:77-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.