IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v128y2019icp19-26.html
   My bibliography  Save this article

Stationary distribution of the linkage disequilibrium coefficient r2

Author

Listed:
  • Zhang, Wei
  • Liu, Jing
  • Goodman, Jesse
  • Weir, Bruce S.
  • Fewster, Rachel M.

Abstract

The linkage disequilibrium coefficient r2 is a measure of statistical dependence of the alleles possessed by an individual at different genetic loci. It is widely used in association studies to search for the locations of disease-causing genes on chromosomes. Most studies to date treat r2 as a fixed property of two loci in a finite population, and investigate the sampling distribution of estimators due to the statistical sampling of individuals from the population. Here, we instead consider the distribution of r2 itself under a process of genetic sampling through the generations. Using a classical two-locus model for genetic drift, mutation, and recombination, we investigate the probability density function of r2 at stationarity. This density function provides a tool for inference on evolutionary parameters such as mutation and recombination rates. We reconstruct the approximate stationary density of r2 by calculating a finite sequence of the distribution’s moments and applying the maximum entropy principle. Our approach is based on the diffusion approximation, under which we demonstrate that for certain models in population genetics, moments of the stationary distribution can be obtained without knowing the probability distribution itself. To illustrate our approach, we show how the stationary probability density of r2 can be used in a maximum likelihood framework to estimate mutation and recombination rates from sample data of r2.

Suggested Citation

  • Zhang, Wei & Liu, Jing & Goodman, Jesse & Weir, Bruce S. & Fewster, Rachel M., 2019. "Stationary distribution of the linkage disequilibrium coefficient r2," Theoretical Population Biology, Elsevier, vol. 128(C), pages 19-26.
  • Handle: RePEc:eee:thpobi:v:128:y:2019:i:c:p:19-26
    DOI: 10.1016/j.tpb.2019.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580918301795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2019.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    2. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
    2. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    3. Samantha Leorato & Maura Mezzetti, 2015. "Spatial Panel Data Model with error dependence: a Bayesian Separable Covariance Approach," CEIS Research Paper 338, Tor Vergata University, CEIS, revised 09 Apr 2015.
    4. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    5. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    6. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    7. Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.
    8. Wu, Ximing & Perloff, Jeffrey M., 2004. "China's Income Distribution Over Time: Reasons for Rising Inequality," Institute for Research on Labor and Employment, Working Paper Series qt9jw2v939, Institute of Industrial Relations, UC Berkeley.
    9. Matthew Wiser & Gloria Yeomans-Maldonado & Sudipta Sarangi, 2014. "Having More Fun with Organized Kissing," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 855-865, January.
    10. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9vd036zx, Department of Agricultural & Resource Economics, UC Berkeley.
    11. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    12. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2004. "A new joint model for longitudinal and survival data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 18-34, October.
    13. Nandram, Balgobin & Zelterman, Daniel, 2007. "Computational Bayesian inference for estimating the size of a finite population," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2934-2945, March.
    14. Samaneh Mahabadi & Mojtaba Ganjali, 2015. "A Bayesian approach for sensitivity analysis of incomplete multivariate longitudinal data with potential nonrandom dropout," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 397-417, December.
    15. Domenico Di Gangi & Fabrizio Lillo & Davide Pirino, 2015. "Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction," Papers 1509.00607, arXiv.org, revised Jul 2018.
    16. Beatty, Timothy K. M. & LaFrance, Jeffrey T, 2005. "U.S. Demand for Food and Nutrition in the 20th Century," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt41f3z7cd, Department of Agricultural & Resource Economics, UC Berkeley.
    17. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    18. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    19. Brewer, M. J. & Aitken, C. G. G. & Talbot, M., 1996. "A comparison of hybrid strategies for Gibbs sampling in mixed graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 21(3), pages 343-365, March.
    20. Lee Tae-Hwy & Mao Millie Yi & Ullah Aman, 2021. "Maximum Entropy Analysis of Consumption-based Capital Asset Pricing Model and Volatility," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:128:y:2019:i:c:p:19-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.