IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v102y2015icp94-101.html
   My bibliography  Save this article

Enhancing the mathematical properties of new haplotype homozygosity statistics for the detection of selective sweeps

Author

Listed:
  • Garud, Nandita R.
  • Rosenberg, Noah A.

Abstract

Soft selective sweeps represent an important form of adaptation in which multiple haplotypes bearing adaptive alleles rise to high frequency. Most statistical methods for detecting selective sweeps from genetic polymorphism data, however, have focused on identifying hard selective sweeps in which a favored allele appears on a single haplotypic background; these methods might be underpowered to detect soft sweeps. Among exceptions is the set of haplotype homozygosity statistics introduced for the detection of soft sweeps by Garud et al. (2015). These statistics, examining frequencies of multiple haplotypes in relation to each other, include H12, a statistic designed to identify both hard and soft selective sweeps, and H2/H1, a statistic that conditional on high H12 values seeks to distinguish between hard and soft sweeps. A challenge in the use of H2/H1 is that its range depends on the associated value of H12, so that equal H2/H1 values might provide different levels of support for a soft sweep model at different values of H12. Here, we enhance the H12 and H2/H1 haplotype homozygosity statistics for selective sweep detection by deriving the upper bound on H2/H1 as a function of H12, thereby generating a statistic that normalizes H2/H1 to lie between 0 and 1. Through a reanalysis of resequencing data from inbred lines of Drosophila, we show that the enhanced statistic both strengthens interpretations obtained with the unnormalized statistic and leads to empirical insights that are less readily apparent without the normalization.

Suggested Citation

  • Garud, Nandita R. & Rosenberg, Noah A., 2015. "Enhancing the mathematical properties of new haplotype homozygosity statistics for the detection of selective sweeps," Theoretical Population Biology, Elsevier, vol. 102(C), pages 94-101.
  • Handle: RePEc:eee:thpobi:v:102:y:2015:i:c:p:94-101
    DOI: 10.1016/j.tpb.2015.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580915000350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2015.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. VanLiere, Jenna M. & Rosenberg, Noah A., 2008. "Mathematical properties of the r2 measure of linkage disequilibrium," Theoretical Population Biology, Elsevier, vol. 74(1), pages 130-137.
    2. Pleuni S Pennings & Joachim Hermisson, 2006. "Soft Sweeps III: The Signature of Positive Selection from Recurrent Mutation," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-15, December.
    3. Jeffrey D Jensen, 2014. "On the unfounded enthusiasm for soft selective sweeps," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    4. Edge, Michael D. & Rosenberg, Noah A., 2014. "Upper bounds on FST in terms of the frequency of the most frequent allele and total homozygosity: The case of a specified number of alleles," Theoretical Population Biology, Elsevier, vol. 97(C), pages 20-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yichen Zheng & Thomas Wiehe, 2019. "Adaptation in structured populations and fuzzy boundaries between hard and soft sweeps," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-32, November.
    2. Stanley Luck, 2019. "Factoring a 2 x 2 contingency table," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-23, October.
    3. Alejandro Ochoa & John D Storey, 2021. "Estimating FST and kinship for arbitrary population structures," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-36, January.
    4. Michael DeGiorgio & Zachary A Szpiech, 2022. "A spatially aware likelihood test to detect sweeps from haplotype distributions," PLOS Genetics, Public Library of Science, vol. 18(4), pages 1-37, April.
    5. Benger, Etam & Sella, Guy, 2013. "Modeling the effect of changing selective pressures on polymorphism and divergence," Theoretical Population Biology, Elsevier, vol. 85(C), pages 73-85.
    6. Parul Johri & Wolfgang Stephan & Jeffrey D Jensen, 2022. "Soft selective sweeps: Addressing new definitions, evaluating competing models, and interpreting empirical outliers," PLOS Genetics, Public Library of Science, vol. 18(2), pages 1-12, February.
    7. Rouzine, Igor M. & Coffin, John M., 2010. "Multi-site adaptation in the presence of infrequent recombination," Theoretical Population Biology, Elsevier, vol. 77(3), pages 189-204.
    8. Smith, Reginald D., 2020. "The nonlinear structure of linkage disequilibrium," Theoretical Population Biology, Elsevier, vol. 134(C), pages 160-170.
    9. Smadi, Charline, 2015. "An eco-evolutionary approach of adaptation and recombination in a large population of varying size," Stochastic Processes and their Applications, Elsevier, vol. 125(5), pages 2054-2095.
    10. Hakhamanesh Mostafavi & Tomaz Berisa & Felix R Day & John R B Perry & Molly Przeworski & Joseph K Pickrell, 2017. "Identifying genetic variants that affect viability in large cohorts," PLOS Biology, Public Library of Science, vol. 15(9), pages 1-29, September.
    11. Edge, Michael D. & Rosenberg, Noah A., 2014. "Upper bounds on FST in terms of the frequency of the most frequent allele and total homozygosity: The case of a specified number of alleles," Theoretical Population Biology, Elsevier, vol. 97(C), pages 20-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:102:y:2015:i:c:p:94-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.