A peer-to-peer approach to energy production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techsoc.2015.02.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Joshua Pearce, 2012. "The case for open source appropriate technology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(3), pages 425-431, June.
- Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
- Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005.
"Distributed generation: definition, benefits and issues,"
Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
- Guido Pepermans & Johan Driesen & Dries Haeseldonckx, 2003. "Distributed generation: definition, benefits and issues," Energy, Transport and Environment Working Papers Series ete0308, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment.
- Saturnino M. Borras & David Fig & Sofía Monsalve Suárez, 2011. "The politics of agrofuels and mega-land and water deals: insights from the ProCana case, Mozambique," Review of African Political Economy, Taylor & Francis Journals, vol. 38(128), pages 215-234, June.
- Strachan, Neil & Farrell, Alexander, 2006. "Emissions from distributed vs. centralized generation: The importance of system performance," Energy Policy, Elsevier, vol. 34(17), pages 2677-2689, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
- Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
- Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
- Cardoso, G. & Stadler, M. & Bozchalui, M.C. & Sharma, R. & Marnay, C. & Barbosa-Póvoa, A. & Ferrão, P., 2014. "Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules," Energy, Elsevier, vol. 64(C), pages 17-30.
- Kalkbrenner, Bernhard J. & Yonezawa, Koichi & Roosen, Jutta, 2017. "Consumer preferences for electricity tariffs: Does proximity matter?," Energy Policy, Elsevier, vol. 107(C), pages 413-424.
- Fatih Cemil Ozbugday & Onder Ozgur, 2018. "Advanced Metering Infrastructure and Distributed Generation: Panel Causality Evidence from New Zealand," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 125-137.
- Mancarella, Pierluigi & Chicco, Gianfranco, 2009. "Global and local emission impact assessment of distributed cogeneration systems with partial-load models," Applied Energy, Elsevier, vol. 86(10), pages 2096-2106, October.
- Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
- Bayod-Rújula, Angel A., 2009. "Future development of the electricity systems with distributed generation," Energy, Elsevier, vol. 34(3), pages 377-383.
- Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
- Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
- Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2020. "Optimal Placement and Sizing of DGs in Distribution Networks Using MLPSO Algorithm," Energies, MDPI, vol. 13(23), pages 1-25, November.
- Richter, Mario, 2013. "German utilities and distributed PV: How to overcome barriers to business model innovation," Renewable Energy, Elsevier, vol. 55(C), pages 456-466.
- Carley, Sanya, 2009. "Distributed generation: An empirical analysis of primary motivators," Energy Policy, Elsevier, vol. 37(5), pages 1648-1659, May.
- Novoa, Laura & Neal, Russ & Samuelsen, Scott & Brouwer, Jack, 2020. "Fuel cell transmission integrated grid energy resources to support generation-constrained power systems," Applied Energy, Elsevier, vol. 276(C).
- Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
- Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
- Tan, Wen-Shan & Hassan, Mohammad Yusri & Majid, Md Shah & Abdul Rahman, Hasimah, 2013. "Optimal distributed renewable generation planning: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 626-645.
- Naderi, Siamak & Pouresmaeil, Edris & Gao, Wenzhong David, 2012. "The frequency-independent control method for distributed generation systems," Applied Energy, Elsevier, vol. 96(C), pages 272-280.
- Li, Mengyu & Zhang, Xiongwen & Li, Guojun & Jiang, Chaoyang, 2016. "A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application," Applied Energy, Elsevier, vol. 176(C), pages 138-148.
More about this item
Keywords
Peer production; Commons; Energy; p2p; Distributed production;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:42:y:2015:i:c:p:28-38. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.