IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v202y2024ics0040162524001276.html
   My bibliography  Save this article

Breaking the carbon lock-in: Identifying pathways for Malaysia towards a low-carbon future

Author

Listed:
  • Schuch, Esther
  • Apergi, Maria
  • Chow, Deborah Yik Kuen
  • Eicke, Laima
  • Goldthau, Andreas
  • Kurniawan, Jude H.
  • Lima-de-Oliveira, Renato
  • Tan, Zhai Gen
  • Weko, Silvia

Abstract

The Paris Agreement requires countries to break away from carbon lock-in, a particular challenge for traditional oil and gas producers. How can these countries overcome path-dependencies to shift from a fossil fuel heavy system to one relying on renewable energy? Malaysia epitomizes this challenge: the country is the second-largest oil producer in Southeast Asia whilst the fossil fuel energy sector takes up nearly 80 % of total greenhouse gas (GHG) emissions, with coal energy occupying the largest share. To identify leverage points of energy transitions, we model the structural components influencing the Malaysian energy system and assess the dynamics of interrelating factors. Based on stakeholders' input, we identify main factors influencing Malaysia's energy transition, explore their interactions, and use Cross Impact Balances (CIB) to create scenarios. Our analysis reveals the need to simultaneously disperse the centralized political power to a more diverse set of actors whilst introducing green growth recovery packages to break the carbon lock-in. Whilst focused on Malaysia, the findings contribute more generally to our understanding how fossil fuel reliant emerging economies can break path-dependencies inhibiting the clean energy transition.

Suggested Citation

  • Schuch, Esther & Apergi, Maria & Chow, Deborah Yik Kuen & Eicke, Laima & Goldthau, Andreas & Kurniawan, Jude H. & Lima-de-Oliveira, Renato & Tan, Zhai Gen & Weko, Silvia, 2024. "Breaking the carbon lock-in: Identifying pathways for Malaysia towards a low-carbon future," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:tefoso:v:202:y:2024:i:c:s0040162524001276
    DOI: 10.1016/j.techfore.2024.123331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524001276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amir F. N. Abdul-Manan & Azizan Baharuddin & Lee Wei Chang, 2015. "Ex-Post Critical Evaluations of Energy Policies in Malaysia from 1970 to 2010: A Historical Institutionalism Perspective," Energies, MDPI, vol. 8(3), pages 1-22, March.
    2. Wolfgang Weimer-Jehle & Stefan Vögele & Wolfgang Hauser & Hannah Kosow & Witold-Roger Poganietz & Sigrid Prehofer, 2020. "Socio-technical energy scenarios: state-of-the-art and CIB-based approaches," Climatic Change, Springer, vol. 162(4), pages 1723-1741, October.
    3. Smith, L. Vanessa & Tarui, Nori & Yamagata, Takashi, 2021. "Assessing the impact of COVID-19 on global fossil fuel consumption and CO2 emissions," Energy Economics, Elsevier, vol. 97(C).
    4. Philippe Le Billon & Païvi Lujala & Devyani Singh & Vance Culbert & Berit Kristoffersen, 2021. "Fossil fuels, climate change, and the COVID-19 crisis: pathways for a just and green post-pandemic recovery," Climate Policy, Taylor & Francis Journals, vol. 21(10), pages 1347-1356, November.
    5. Sibeperegasam, Mahesvaran & Ramachandaramurthy, Vigna Kumaran & Walker, Sara & Kanesan, Jeevan, 2021. "Malaysia’s electricity market structure in transition," Utilities Policy, Elsevier, vol. 72(C).
    6. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    7. Alexander Thompson, 2020. "Emerging Powers and Differentiation in Global Climate Institutions," Global Policy, London School of Economics and Political Science, vol. 11(S3), pages 61-72, October.
    8. Oh, Tick Hui & Hasanuzzaman, Md & Selvaraj, Jeyraj & Teo, Siew Chein & Chua, Shing Chyi, 2018. "Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth – An update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3021-3031.
    9. Zhang, Fang & Gallagher, Kelly Sims, 2016. "Innovation and technology transfer through global value chains: Evidence from China's PV industry," Energy Policy, Elsevier, vol. 94(C), pages 191-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    2. Yanyan Jiang & Mohammad Razib Hossain & Zeeshan Khan & Junying Chen & Ramez Abubakr Badeeb, 2024. "Revisiting Research and Development Expenditures and Trade Adjusted Emissions: Green Innovation and Renewable Energy R&D Role for Developed Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 2156-2191, March.
    3. Malhotra, Abhishek & Schmidt, Tobias S. & Huenteler, Joern, 2019. "The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 464-487.
    4. Adela Conchado & Pedro Linares, 2017. "A New ‘Cut’ on Technological Innovation Aiming for Sustainability in a Globalized World," SPRU Working Paper Series 2017-25, SPRU - Science Policy Research Unit, University of Sussex Business School.
    5. Fang, Da & Guo, Yan, 2022. "Flow of goods to the shock of COVID-19 and toll-free highway policy: Evidence from logistics data in China," Research in Transportation Economics, Elsevier, vol. 93(C).
    6. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    7. Piotr Lis & Zuzanna Rataj & Katarzyna Suszyńska, 2022. "Implementation Risk Factors of Collaborative Housing in Poland: The Case of ‘Nowe Żerniki’ in Wrocław," JRFM, MDPI, vol. 15(3), pages 1-12, February.
    8. Natalie Slawinski & Jonatan Pinkse & Timo Busch & Subhabrata Bobby Banerjeed, 2014. "The role of short-termism and uncertainty in organizational inaction on climate change: multilevel framework," Working Papers hal-00961226, HAL.
    9. Johannes Urpelainen, 2012. "How do electoral competition and special interests shape the stringency of renewable energy standards?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(1), pages 23-34, January.
    10. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    11. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    12. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    14. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).
    15. João Tovar Jalles, 2024. "Financial Crises and Climate Change," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 66(1), pages 166-190, March.
    16. Gandenberger, Carsten, 2018. "China's trajectory from production to innovation: Insights from the photovoltaics sector," Working Papers "Sustainability and Innovation" S03/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
    17. Mander, Sarah. L. & Bows, Alice & Anderson, Kevin. L. & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part I: Development of a backcasting methodology with stakeholder participation," Energy Policy, Elsevier, vol. 36(10), pages 3754-3763, October.
    18. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Balkrishna C. Rao & Ingo Liefner, 2023. "Frugal Engineering of Advanced Frugal Innovations for Global Sustainability Entrepreneurship," Journal of Entrepreneurship and Innovation in Emerging Economies, Entrepreneurship Development Institute of India, vol. 32(2_suppl), pages 69-88, November.
    20. Shum, Kwok L. & Watanabe, Chihiro, 2007. "Photovoltaic deployment strategy in Japan and the USA--an institutional appraisal," Energy Policy, Elsevier, vol. 35(2), pages 1186-1195, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:202:y:2024:i:c:s0040162524001276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.