IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v196y2023ics0040162523004900.html
   My bibliography  Save this article

Unfolding the link between big data analytics and supply chain planning

Author

Listed:
  • Xu, Jinou
  • Pero, Margherita
  • Fabbri, Margherita

Abstract

Big data analytics (BDA) has captured growing research interests in operations and supply chain management literature, yet, despite the significant implication, extant knowledge falls short in drawing the link between BDA and supply chain planning (SCP) with in a structured manner. This paper employs the Delphi technique to uncover the synergies between BDA technology, conceptualized as big data sources and BDA methods, and the SCP activities framed with the SCP matrix. The panel runs for three rounds with 35 experts including scholars, supply chain practitioners, and BDA specialists. The results of this paper suggest that the relevance of BDA depends on the focal SCP activity. Thirty-five projections are presented on the expected impact of BDA on SCP that are classified into three groups based on the significance of impact and probability of occurrence. This work advances the understanding of BDA in supply chain management drawing implications to prioritize BDA investment for SCP.

Suggested Citation

  • Xu, Jinou & Pero, Margherita & Fabbri, Margherita, 2023. "Unfolding the link between big data analytics and supply chain planning," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:tefoso:v:196:y:2023:i:c:s0040162523004900
    DOI: 10.1016/j.techfore.2023.122805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523004900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    2. Barrios, Maite & Guilera, Georgina & Nuño, Laura & Gómez-Benito, Juana, 2021. "Consensus in the delphi method: What makes a decision change?," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    3. Ilin, Vladimir & Ivetić, Jelena & Simić, Dragan, 2017. "Understanding the determinants of e-business adoption in ERP-enabled firms and non-ERP-enabled firms: A case study of the Western Balkan Peninsula," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 206-223.
    4. Shalini Talwar & Puneet Kaur & Samuel Fosso Wamba & Amandeep Dhir, 2021. "Big Data in operations and supply chain management: a systematic literature review and future research agenda," International Journal of Production Research, Taylor & Francis Journals, vol. 59(11), pages 3509-3534, June.
    5. Choi, Tsan-Ming, 2018. "Incorporating social media observations and bounded rationality into fashion quick response supply chains in the big data era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 386-397.
    6. Chaoyang Zhang & Zhengxu Wang & Kai Ding & Felix T.S. Chan & Weixi Ji, 2020. "An energy-aware cyber physical system for energy Big data analysis and recessive production anomalies detection in discrete manufacturing workshops," International Journal of Production Research, Taylor & Francis Journals, vol. 58(23), pages 7059-7077, December.
    7. Sjoerd van der Spoel & Chintan Amrit & Jos van Hillegersberg, 2017. "Predictive analytics for truck arrival time estimation: a field study at a European distribution centre," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5062-5078, September.
    8. Arunachalam, Deepak & Kumar, Niraj & Kawalek, John Paul, 2018. "Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 416-436.
    9. Yves R. Sagaert & El-Houssaine Aghezzaf & Nikolaos Kourentzes & Bram Desmet, 2018. "Temporal Big Data for Tactical Sales Forecasting in the Tire Industry," Interfaces, INFORMS, vol. 48(2), pages 121-129, April.
    10. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    11. Dmitry Ivanov, 2017. "Simulation-based single vs. dual sourcing analysis in the supply chain with consideration of capacity disruptions, big data and demand patterns," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 11(1), pages 24-43.
    12. Culot, Giovanna & Orzes, Guido & Sartor, Marco & Nassimbeni, Guido, 2020. "The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    13. Flostrand, Andrew & Pitt, Leyland & Bridson, Shannon, 2020. "The Delphi technique in forecasting– A 42-year bibliographic analysis (1975–2017)," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    14. Zhong, Ray Y. & Huang, George Q. & Lan, Shulin & Dai, Q.Y. & Chen, Xu & Zhang, T., 2015. "A big data approach for logistics trajectory discovery from RFID-enabled production data," International Journal of Production Economics, Elsevier, vol. 165(C), pages 260-272.
    15. Tsan‐Ming Choi & Stein W. Wallace & Yulan Wang, 2018. "Big Data Analytics in Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1868-1883, October.
    16. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    17. David Roubaud & Rameshwar Dubey & Cyril Foropon & Angappa Gunasekaran & Stephen J. Childe & Zongwei Luo & Fosso Wamba Samuel, 2018. "Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour," Post-Print hal-02051276, HAL.
    18. Tonya Boone & Ram Ganeshan & Robert L. Hicks & Nada R. Sanders, 2018. "Can Google Trends Improve Your Sales Forecast?," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1770-1774, October.
    19. Boone, Tonya & Ganeshan, Ram & Jain, Aditya & Sanders, Nada R., 2019. "Forecasting sales in the supply chain: Consumer analytics in the big data era," International Journal of Forecasting, Elsevier, vol. 35(1), pages 170-180.
    20. Ray Y. Zhong & Chen Xu & Chao Chen & George Q. Huang, 2017. "Big Data Analytics for Physical Internet-based intelligent manufacturing shop floors," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2610-2621, May.
    21. Qi Feng & J. George Shanthikumar, 2018. "How Research in Production and Operations Management May Evolve in the Era of Big Data," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1670-1684, September.
    22. Thorsten Krægpøth & Jan Stentoft & Jesper Kronborg Jensen, 2017. "Dynamic supply chain design: a Delphi study of drivers and barriers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6846-6856, November.
    23. Erik Hofmann, 2017. "Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip effect," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5108-5126, September.
    24. Peppel, Marcel & Ringbeck, Jürgen & Spinler, Stefan, 2022. "How will last-mile delivery be shaped in 2040? A Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sivarajah, Uthayasankar & Kumar, Sachin & Kumar, Vinod & Chatterjee, Sheshadri & Li, Jing, 2024. "A study on big data analytics and innovation: From technological and business cycle perspectives," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    2. Zhao, Guoqing & Xie, Xiaotian & Wang, Yi & Liu, Shaofeng & Jones, Paul & Lopez, Carmen, 2024. "Barrier analysis to improve big data analytics capability of the maritime industry: A mixed-method approach," Technological Forecasting and Social Change, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    2. Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
    3. Vaibhav S. Narwane & Rakesh D. Raut & Sachin Kumar Mangla & Manoj Dora & Balkrishna E. Narkhede, 2023. "Risks to Big Data Analytics and Blockchain Technology Adoption in Supply Chains," Annals of Operations Research, Springer, vol. 327(1), pages 339-374, August.
    4. Raut, Rakesh D. & Mangla, Sachin Kumar & Narwane, Vaibhav S. & Dora, Manoj & Liu, Mengqi, 2021. "Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    5. Wilkin, Carla & Ferreira, Aldónio & Rotaru, Kristian & Gaerlan, Luigi Red, 2020. "Big data prioritization in SCM decision-making: Its role and performance implications," International Journal of Accounting Information Systems, Elsevier, vol. 38(C).
    6. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    7. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    8. Patrucco, Andrea S. & Marzi, Giacomo & Trabucchi, Daniel, 2023. "The role of absorptive capacity and big data analytics in strategic purchasing and supply chain management decisions," Technovation, Elsevier, vol. 126(C).
    9. Kazancoglu, Yigit & Sagnak, Muhittin & Mangla, Sachin Kumar & Sezer, Muruvvet Deniz & Pala, Melisa Ozbiltekin, 2021. "A fuzzy based hybrid decision framework to circularity in dairy supply chains through big data solutions," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    10. Delke, Vincent & Schiele, Holger & Buchholz, Wolfgang & Kelly, Stephen, 2023. "Implementing Industry 4.0 technologies: Future roles in purchasing and supply management," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    11. Beiderbeck, Daniel & Evans, Nicolas & Frevel, Nicolas & Schmidt, Sascha L., 2023. "The impact of technology on the future of football – A global Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    12. Bag, Surajit & Rahman, Muhammad Sabbir & Srivastava, Gautam & Shore, Adam & Ram, Pratibha, 2023. "Examining the role of virtue ethics and big data in enhancing viable, sustainable, and digital supply chain performance," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    13. Benzidia, Smail & Makaoui, Naouel & Bentahar, Omar, 2021. "The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    14. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    15. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
    16. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    17. Vicky Ching Gu & Bin Zhou & Qing Cao & Jeffery Adams, 2021. "Exploring the relationship between supplier development, big data analytics capability, and firm performance," Annals of Operations Research, Springer, vol. 302(1), pages 151-172, July.
    18. Li, Xiang, 2020. "Reducing channel costs by investing in smart supply chain technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    19. Schoenherr, Tobias, 2023. "Supply chain management professionals’ proficiency in big data analytics: Antecedents and impact on performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    20. Peppel, Marcel & Ringbeck, Jürgen & Spinler, Stefan, 2022. "How will last-mile delivery be shaped in 2040? A Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:196:y:2023:i:c:s0040162523004900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.