IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v180y2022ics0040162521008350.html
   My bibliography  Save this article

Merits of Intercity Innovation Cooperation of Environment-friendly Patents for Environmental Regulation Efficiency

Author

Listed:
  • Zeng, Juying
  • Pagàn-Castaño, Esther
  • Ribeiro-Navarrete, Samuel

Abstract

The innovation cooperation among enterprises and cities exerts impacts on efficiency to gain both economic and environmental performances. The research employs a dynamic social cooperation network weighted spatial Durbin approach to examine the merits of innovation cooperation of environment-friendly patents on environmental regulation efficiency with 6886 pieces of related patents in 26 Chinese cities. Using the Super-SBM model with undesirable outputs, the research finds the environmental regulation efficiency witnesses a dramatic improvement while great intercity discrepancy for 26 cities in Yangtze River Delta region. The social cooperation network identification clarifies the intercity innovation cooperation of environment-friendly patents does exist among 26 cities and the cooperation intensity has enhanced considerably. Furthermore, several more developed cities have strong "control ability" over resources. The dynamic spatial Durbin identification validates the innovation cooperation through control ability of information resources for other cities could significantly improve the environmental regulation efficiency. While the overall cooperation intensity has a hindering role on environmental regulation efficiency for 26 cities. The results provide new insights of innovation cooperation on improving environmental regulation efficiency in a developing economy.

Suggested Citation

  • Zeng, Juying & Pagàn-Castaño, Esther & Ribeiro-Navarrete, Samuel, 2022. "Merits of Intercity Innovation Cooperation of Environment-friendly Patents for Environmental Regulation Efficiency," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:tefoso:v:180:y:2022:i:c:s0040162521008350
    DOI: 10.1016/j.techfore.2021.121404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521008350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.121404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tone, Kaoru & Sahoo, Biresh K., 2003. "Scale, indivisibilities and production function in data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 84(2), pages 165-192, May.
    2. M. Ozman, 2009. "Inter-firm networks and innovation: a survey of literature," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(1), pages 39-67.
    3. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    4. Cenjie Liu & Chunbo Ma & Rui Xie, 2020. "Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China’s Carbon Emissions Trading Pilot," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 741-768, April.
    5. Ferreira, João J.M. & Fernandes, Cristina I. & Ferreira, Fernando A.F., 2020. "Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: A comparison of European countries," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    6. Satoshi Honma, 2015. "Does international trade improve environmental efficiency? An application of a super slacks-based measure of efficiency," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-12, December.
    7. Guo, Ran & Yuan, Yijun, 2020. "Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: Evidence from Chinese provincial data," Energy Policy, Elsevier, vol. 145(C).
    8. Hu, Jiangfeng & Pan, Xinxin & Huang, Qinghua, 2020. "Quantity or quality? The impacts of environmental regulation on firms’ innovation–Quasi-natural experiment based on China's carbon emissions trading pilot," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    9. George E. Halkos & Shunsuke Managi, 2017. "Measuring the Effect of Economic Growth on Countries’ Environmental Efficiency: A Conditional Directional Distance Function Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 753-775, November.
    10. Michael J. Barber & Thomas Scherngell, 2013. "Is the European R&D Network Homogeneous? Distinguishing Relevant Network Communities Using Graph Theoretic and Spatial Interaction Modelling Approaches," Regional Studies, Taylor & Francis Journals, vol. 47(8), pages 1283-1298, September.
    11. Shuai Shao & Zhigao Hu & Jianhua Cao & Lili Yang & Dabo Guan, 2020. "Environmental Regulation and Enterprise Innovation: A Review," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1465-1478, March.
    12. Fredriksson, Per G. & Millimet, Daniel L., 2002. "Strategic Interaction and the Determination of Environmental Policy across U.S. States," Journal of Urban Economics, Elsevier, vol. 51(1), pages 101-122, January.
    13. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    14. Manfred Paier & Thomas Scherngell, 2011. "Determinants of Collaboration in European R&D Networks: Empirical Evidence from a Discrete Choice Model," Industry and Innovation, Taylor & Francis Journals, vol. 18(1), pages 89-104.
    15. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    16. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaohong & Yang, Jiangjiang & Xu, Chengzhen & Li, Xingchen & Zhu, Qingyuan, 2023. "Environmental regulation efficiency analysis by considering regional heterogeneity," Resources Policy, Elsevier, vol. 83(C).
    2. Crespo, Nuno Fernandes & Crespo, Cátia Fernandes & Silva, Graça Miranda & Nicola, Maura Bedin, 2023. "Innovation in times of crisis: The relevance of digitalization and early internationalization strategies," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    3. Hsu, Bo-Xiang & Chen, Yi-Min, 2023. "The relationship between corporate social responsibility, external orientation, and environmental performance," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    4. Shobande, Olatunji A. & Ogbeifun, Lawrence, 2023. "Pooling cross-sectional and time series data for estimating causality between technological innovation, affluence and carbon dynamics: A comparative evidence from developed and developing countries," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    5. Wang, Tianchi & Sun, Ting & Chen, Qiuling, 2024. "Curvilinear effect of policy intensity on innovation performance in the integrated circuit industry: Too much of a good thing?," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1337-1352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    2. Liu, Duan & Yu, Nizhou & Wan, Hong, 2022. "Does water rights trading affect corporate investment? The role of resource allocation and risk mitigation channels," Economic Modelling, Elsevier, vol. 117(C).
    3. César Salazar & Roberto Cárdenas-Retamal & Marcela Jaime, 2023. "Environmental efficiency in the salmon industry—an exploratory analysis around the 2007 ISA virus outbreak and subsequent regulations in Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8107-8135, August.
    4. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    5. Xu, Le & Yang, Lili & Li, Ding & Shao, Shuai, 2023. "Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China," Energy Economics, Elsevier, vol. 117(C).
    6. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    7. Yu, Xiaohong & Xu, Haiyan & Lou, Wengao & Xu, Xun & Shi, Victor, 2023. "Examining energy eco-efficiency in China's logistics industry," International Journal of Production Economics, Elsevier, vol. 258(C).
    8. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    9. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    10. Guo, Ran & Yuan, Yijun, 2020. "Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: Evidence from Chinese provincial data," Energy Policy, Elsevier, vol. 145(C).
    11. Qingxian An & Haoxun Chen & Jie Wu & Liang Liang, 2015. "Measuring slacks-based efficiency for commercial banks in China by using a two-stage DEA model with undesirable output," Annals of Operations Research, Springer, vol. 235(1), pages 13-35, December.
    12. Xie, Ronghui & Teo, Thompson S.H., 2022. "Green technology innovation, environmental externality, and the cleaner upgrading of industrial structure in China — Considering the moderating effect of environmental regulation," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    13. Afzalinejad, Mohammad, 2020. "Reverse efficiency measures for environmental assessment in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    14. Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.
    15. Lu, Ching-Cheng & Chiu, Yung-Ho & Shyu, Ming-Kuang & Lee, Jen-Hui, 2013. "Measuring CO2 emission efficiency in OECD countries: Application of the Hybrid Efficiency model," Economic Modelling, Elsevier, vol. 32(C), pages 130-135.
    16. Wang, Xinbin & Wang, Zilong & Wang, Rong, 2023. "Does green economy contribute towards COP26 ambitions? Exploring the influence of natural resource endowment and technological innovation on the growth efficiency of China's regional green economy," Resources Policy, Elsevier, vol. 80(C).
    17. Yue Liu & Pierre Failler & Zhiying Liu, 2022. "Impact of Environmental Regulations on Energy Efficiency: A Case Study of China’s Air Pollution Prevention and Control Action Plan," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    18. Maohui Ren & Tao Zhou & Di Wang & Chenxi Wang, 2023. "Does Environmental Regulation Promote the Infrastructure Investment Efficiency? Analysis Based on the Spatial Effects," IJERPH, MDPI, vol. 20(4), pages 1-24, February.
    19. Lee, Chien-Chiang & Ho, Shan-Ju, 2022. "Impacts of export diversification on energy intensity, renewable energy, and waste energy in 121 countries: Do environmental regulations matter?," Renewable Energy, Elsevier, vol. 199(C), pages 1510-1522.
    20. Yanwei Lyu & Jinning Zhang & Lingli Wang & Fei Yang & Yu Hao, 2022. "Towards a win‐win situation for innovation and sustainable development: The role of environmental regulation," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1703-1717, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:180:y:2022:i:c:s0040162521008350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.