IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v173y2021ics0040162521005606.html
   My bibliography  Save this article

Curvature-based feature selection with application in classifying electronic health records

Author

Listed:
  • Zuo, Zheming
  • Li, Jie
  • Xu, Han
  • Al Moubayed, Noura

Abstract

Disruptive technologies provides unparalleled opportunities to contribute to the identifications of many aspects in pervasive healthcare, from the adoption of the Internet of Things through to Machine Learning (ML) techniques. As a powerful tool, ML has been widely applied in patient-centric healthcare solutions. To further improve the quality of patient care, Electronic Health Records (EHRs) are commonly adopted in healthcare facilities for analysis. It is a crucial task to apply AI and ML to analyse those EHRs for prediction and diagnostics due to their highly unstructured, unbalanced, incomplete, and high-dimensional nature. Dimensionality reduction is a common data preprocessing technique to cope with high-dimensional EHR data, which aims to reduce the number of features of EHR representation while improving the performance of the subsequent data analysis, e.g. classification. In this work, an efficient filter-based feature selection method, namely Curvature-based Feature Selection (CFS), is presented. The proposed CFS applied the concept of Menger Curvature to rank the weights of all features in the given data set. The performance of the proposed CFS has been evaluated in four well-known EHR data sets, including Cervical Cancer Risk Factors (CCRFDS), Breast Cancer Coimbra (BCCDS), Breast Tissue (BTDS), and Diabetic Retinopathy Debrecen (DRDDS). The experimental results show that the proposed CFS achieved state-of-the-art performance on the above data sets against conventional PCA and other most recent approaches. The source code of the proposed approach is publicly available at https://github.com/zhemingzuo/CFS.

Suggested Citation

  • Zuo, Zheming & Li, Jie & Xu, Han & Al Moubayed, Noura, 2021. "Curvature-based feature selection with application in classifying electronic health records," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521005606
    DOI: 10.1016/j.techfore.2021.121127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521005606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.121127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Victor, 2021. "An ethical framework for big data and smart cities," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    2. Abdel-Basset, Mohamed & Chang, Victor & Nabeeh, Nada A., 2021. "An intelligent framework using disruptive technologies for COVID-19 analysis," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yogesh K. Dwivedi & A. Sharma & Nripendra P. Rana & M. Giannakis & P. Goel & Vincent Dutot, 2023. "Evolution of Artificial Intelligence Research in Technological Forecasting and Social Change: Research Topics, Trends, and Future Directions," Post-Print hal-04292607, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Chunjia & Yang, Mu & Piterou, Athena, 2021. "Do news media and citizens have the same agenda on COVID-19? an empirical comparison of twitter posts," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    2. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "Heterogenous evaluations of autonomous vehicle services: An extended theoretical framework and empirical evidence," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    3. Rubbio, Iacopo & Bruccoleri, Manfredi, 2023. "Unfolding the relationship between digital health and patient safety: The roles of absorptive capacity and healthcare resilience," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    4. Ayesha Amjad & Piotr Kordel & Gabriela Fernandes, 2023. "A Review on Innovation in Healthcare Sector (Telehealth) through Artificial Intelligence," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    5. Basile, L.J. & Carbonara, N. & Panniello, U. & Pellegrino, R., 2024. "The role of big data analytics in improving the quality of healthcare services in the Italian context: The mediating role of risk management," Technovation, Elsevier, vol. 133(C).
    6. Chiarello, Filippo & Fantoni, Gualtiero & Hogarth, Terence & Giordano, Vito & Baltina, Liga & Spada, Irene, 2021. "Towards ESCO 4.0 – Is the European classification of skills in line with Industry 4.0? A text mining approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Dang, Ngoc Bich & Bertrandias, Laurent, 2023. "Social robots as healing aids: How and why powerlessness influences the intention to adopt social robots," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    8. Ante, Lennart & Fiedler, Ingo & Strehle, Elias, 2021. "The impact of transparent money flows: Effects of stablecoin transfers on the returns and trading volume of Bitcoin," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    9. Caselli, Mauro & Fracasso, Andrea, 2021. "Covid-19 and Technology," GLO Discussion Paper Series 1001, Global Labor Organization (GLO).
    10. Salma Benchekroun & V. G. Venkatesh & Ilham Dkhissi & D. Jinil Persis & Arunmozhi Manimuthu & M. Suresh & V. Raja Sreedharan, 2023. "Managing the retail operations in the COVID‐19 pandemic: Evidence from Morocco," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(1), pages 424-447, January.
    11. Huang, Tseng-Lung & Liu, Ben S.C., 2021. "Augmented reality is human-like: How the humanizing experience inspires destination brand love," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    12. Ayyoob Sharifi & Amir Reza Khavarian-Garmsir & Rama Krishna Reddy Kummitha, 2021. "Contributions of Smart City Solutions and Technologies to Resilience against the COVID-19 Pandemic: A Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
    13. Caselli, Mauro & Fracasso, Andrea & Traverso, Silvio, 2021. "Robots and risk of COVID-19 workplace contagion: Evidence from Italy," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    14. Ávila-Robinson, Alfonso & Islam, Nazrul & Sengoku, Shintaro, 2022. "Exploring the knowledge base of innovation research: Towards an emerging innovation model," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    15. Shaygan, Amir & Daim, Tugrul, 2023. "Technology management maturity assessment model in healthcare research centers," Technovation, Elsevier, vol. 120(C).
    16. Jin Sung Rha & Hong-Hee Lee, 2022. "Research trends in digital transformation in the service sector: a review based on network text analysis," Service Business, Springer;Pan-Pacific Business Association, vol. 16(1), pages 77-98, March.
    17. Paiola, Marco & Schiavone, Francesco & Khvatova, Tatiana & Grandinetti, Roberto, 2021. "Prior knowledge, industry 4.0 and digital servitization. An inductive framework," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    18. Ali, Mohd Helmi & Chung, Leanne & Kumar, Ajay & Zailani, Suhaiza & Tan, Kim Hua, 2021. "A sustainable Blockchain framework for the halal food supply chain: Lessons from Malaysia," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    19. Prabh Deep Singh & Rajbir Kaur & Kiran Deep Singh & Gaurav Dhiman, 2021. "A Novel Ensemble-based Classifier for Detecting the COVID-19 Disease for Infected Patients," Information Systems Frontiers, Springer, vol. 23(6), pages 1385-1401, December.
    20. Jessica Müller-Pérez & Viridiana Sarahí Garza-Muñiz & Ángel Acevedo-Duque & Elizabeth Emperatriz García-Salirrosas & Jorge Alberto Esponda-Pérez & Rina Álvarez-Becerra, 2022. "The Future of Tamaulipas MSMEs after COVID-19: Intention to Adopt Inbound Marketing Tools," Sustainability, MDPI, vol. 14(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521005606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.