IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v155y2020ics0040162517308302.html
   My bibliography  Save this article

Make disruptive technological change happen - The case of additive manufacturing

Author

Listed:
  • Maresch, Daniela
  • Gartner, Johannes

Abstract

Disruptive technological change can contribute to a more abundant world. However, potentially disruptive technologies often struggle to significantly influence practice. One prominent example is additive manufacturing (AM). Although AM is often regarded as the next great technological revolution in waiting, it has not yet established itself on a large scale in many fields of application. We investigate the reasons behind those challenges by looking at the various fields in which AM is applied and relating them to the specific challenges AM faces, as well as the opportunities it offers in those fields. Our findings rely on a multi-perspective technology foresight process that is based on a discourse analytic approach and that comprises data tomography covering the biggest German-language online magazine on AM and qualitative interview data collected from a range of AM stakeholders. The findings provide an empirically well-founded evaluation and explanation of the link between the challenges and opportunities offered by AM and the extent to which this disruptive technology is leveraged in specific fields. The findings prompt recommendations on how new potentially disruptive technologies can foster abundance in traditional, well established market economies based on the example of the well-developed but traditional market economy of Austria.

Suggested Citation

  • Maresch, Daniela & Gartner, Johannes, 2020. "Make disruptive technological change happen - The case of additive manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:tefoso:v:155:y:2020:i:c:s0040162517308302
    DOI: 10.1016/j.techfore.2018.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517308302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ratinho, Tiago & Harms, Rainer & Walsh, Steven, 2015. "Structuring the Technology Entrepreneurship publication landscape: Making sense out of chaos," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 168-175.
    2. Gary C. Moore & Izak Benbasat, 1991. "Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation," Information Systems Research, INFORMS, vol. 2(3), pages 192-222, September.
    3. Jiang, Ruth & Kleer, Robin & Piller, Frank T., 2017. "Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 84-97.
    4. Despeisse, M. & Baumers, M. & Brown, P. & Charnley, F. & Ford, S.J. & Garmulewicz, A. & Knowles, S. & Minshall, T.H.W. & Mortara, L. & Reed-Tsochas, F.P. & Rowley, J., 2017. "Unlocking value for a circular economy through 3D printing: A research agenda," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 75-84.
    5. Berman, Barry, 2012. "3-D printing: The new industrial revolution," Business Horizons, Elsevier, vol. 55(2), pages 155-162.
    6. Kerstin Cuhls, 2003. "From forecasting to foresight processes-new participative foresight activities in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(2-3), pages 93-111.
    7. Bouncken, Ricarda B. & Kraus, Sascha, 2013. "Innovation in knowledge-intensive industries: The double-edged sword of coopetition," Journal of Business Research, Elsevier, vol. 66(10), pages 2060-2070.
    8. Attaran, Mohsen, 2017. "The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing," Business Horizons, Elsevier, vol. 60(5), pages 677-688.
    9. Baumers, Martin & Dickens, Phill & Tuck, Chris & Hague, Richard, 2016. "The cost of additive manufacturing: machine productivity, economies of scale and technology-push," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 193-201.
    10. Rayna, Thierry & Striukova, Ludmila, 2016. "From rapid prototyping to home fabrication: How 3D printing is changing business model innovation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 214-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonnín Roca, Jaime & Vaishnav, Parth & Morgan, Granger M. & Fuchs, Erica & Mendonça, Joana, 2021. "Technology Forgiveness: Why emerging technologies differ in their resilience to institutional instability," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    2. Cowden, Birton & Tang, Jintong, 2022. "Institutional entrepreneurial orientation: Beyond setting the rules of the game for blockchain technology," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    3. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    4. Turkcan, Hulya & Imamoglu, Salih Zeki & Ince, Huseyin, 2022. "To be more innovative and more competitive in dynamic environments: The role of additive manufacturing," International Journal of Production Economics, Elsevier, vol. 246(C).
    5. Wang, Xiaoli & Liang, Wenting & Ye, Xuanting & Chen, Lingdi & Liu, Yun, 2024. "Disruptive development path measurement for emerging technologies based on the patent citation network," Journal of Informetrics, Elsevier, vol. 18(1).
    6. Gartner, Johannes & Fink, Matthias & Maresch, Daniela, 2022. "The Role of Fear of Missing Out and Experience in the Formation of SME Decision Makers’ Intentions to Adopt New Manufacturing Technologies," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    7. Li, Munan & Porter, Alan L. & Suominen, Arho & Burmaoglu, Serhat & Carley, Stephen, 2021. "An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence," Technological Forecasting and Social Change, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caviggioli, Federico & Ughetto, Elisa, 2019. "A bibliometric analysis of the research dealing with the impact of additive manufacturing on industry, business and society," International Journal of Production Economics, Elsevier, vol. 208(C), pages 254-268.
    2. Holzmann, Patrick & Breitenecker, Robert J. & Schwarz, Erich J. & Gregori, Patrick, 2020. "Business model design for novel technologies in nascent industries: An investigation of 3D printing service providers," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    3. Patrick Holzmann & Erich J. Schwarz & David B. Audretsch, 2020. "Understanding the determinants of novel technology adoption among teachers: the case of 3D printing," The Journal of Technology Transfer, Springer, vol. 45(1), pages 259-275, February.
    4. Yeh, Ching-Chiang & Chen, Yi-Fan, 2018. "Critical success factors for adoption of 3D printing," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 209-216.
    5. Naghshineh, Bardia & Carvalho, Helena, 2022. "The implications of additive manufacturing technology adoption for supply chain resilience: A systematic search and review," International Journal of Production Economics, Elsevier, vol. 247(C).
    6. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    7. Nazanin Hosseini Arian & Alireza Pooya & Fariborz Rahimnia & Ali Sibevei, 2021. "Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach," Operations Management Research, Springer, vol. 14(3), pages 467-493, December.
    8. Naghshineh, Bardia & Ribeiro, André & Jacinto, Celeste & Carvalho, Helena, 2021. "Social impacts of additive manufacturing: A stakeholder-driven framework," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    9. Annika Wiecek & Daniel Wentzel & Aras Erkin, 2020. "Just print it! The effects of self-printing a product on consumers’ product evaluations and perceived ownership," Journal of the Academy of Marketing Science, Springer, vol. 48(4), pages 795-811, July.
    10. Rayna, Thierry & Striukova, Ludmila, 2021. "Assessing the effect of 3D printing technologies on entrepreneurship: An exploratory study," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    11. Kleer, Robin & Piller, Frank T., 2019. "Local manufacturing and structural shifts in competition: Market dynamics of additive manufacturing," International Journal of Production Economics, Elsevier, vol. 216(C), pages 23-34.
    12. Harshad Sonar & Vivek Khanzode & Milind Akarte, 2022. "Additive Manufacturing Enabled Supply Chain Management: A Review and Research Directions," Vision, , vol. 26(2), pages 147-162, June.
    13. Culot, Giovanna & Orzes, Guido & Sartor, Marco & Nassimbeni, Guido, 2020. "The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    14. Marco Savastano & Carlo Amendola & Francesco Bellini & Fabrizio D’Ascenzo, 2019. "Contextual Impacts on Industrial Processes Brought by the Digital Transformation of Manufacturing: A Systematic Review," Sustainability, MDPI, vol. 11(3), pages 1-38, February.
    15. Florinda Matos & Radu Godina & Celeste Jacinto & Helena Carvalho & Inês Ribeiro & Paulo Peças, 2019. "Additive Manufacturing: Exploring the Social Changes and Impacts," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    16. Jaya Priyadarshini & Rajesh Kr Singh & Ruchi Mishra & Surajit Bag, 2022. "Investigating the interaction of factors for implementing additive manufacturing to build an antifragile supply chain: TISM-MICMAC approach," Operations Management Research, Springer, vol. 15(1), pages 567-588, June.
    17. Lacroix, Rachel & Seifert, Ralf W. & Timonina-Farkas, Anna, 2021. "Benefiting from additive manufacturing for mass customization across the product life cycle," Operations Research Perspectives, Elsevier, vol. 8(C).
    18. Birtchnell, Thomas & Böhme, Tillmann & Gorkin, Robert, 2017. "3D printing and the third mission: The university in the materialization of intellectual capital," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 240-249.
    19. Niclas Hoffmann & Robert Stahlbock & Stefan Voß, 2020. "A decision model on the repair and maintenance of shipping containers," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-21, December.
    20. Wang, Lili & Jiang, Shan & Zhang, Shiyun, 2020. "Mapping technological trajectories and exploring knowledge sources: A case study of 3D printing technologies," Technological Forecasting and Social Change, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:155:y:2020:i:c:s0040162517308302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.