IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v138y2019icp254-260.html
   My bibliography  Save this article

A 30-year retrospective case analysis in the Delphi of cognitive rehabilitation therapy

Author

Listed:
  • Finley, John-Christopher
  • Parente, Frederick

Abstract

In 1987, Parente used the Delphi method to predict changes in the field of cognitive rehabilitation therapy (CRT). Fifty licensed professionals provided predictions about the likely occurrence and probable time courses for 31 scenarios that could possibly have occurred over the 30-year interval between 1987 and 2000+. It has now been 30 years since the initial polling; thus, the purpose of this study was to evaluate the accuracy of these Delphic predictions, via two validation methods. First, we contacted and reviewed statistical information from nationwide data bases (i.e., Center for Disease Control and Prevention, and the Brain Injury Association of America) to see If the scenarios occurred. Second, we polled 12 additional professionals, most of whom had practiced in the field of CRT during the polling period and who still maintained an active practice to assess When the various remaining scenarios had occurred. In this study, probability of occurrence accuracy was approximately 80%, although there was a significant bias towards false positives. Time course predictions were accurate within 1–5 years, although there was a general bias towards underestimating the occurrence of the events.

Suggested Citation

  • Finley, John-Christopher & Parente, Frederick, 2019. "A 30-year retrospective case analysis in the Delphi of cognitive rehabilitation therapy," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 254-260.
  • Handle: RePEc:eee:tefoso:v:138:y:2019:i:c:p:254-260
    DOI: 10.1016/j.techfore.2018.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517313963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samir Mili & Maria Bouhaddane, 2021. "Forecasting Global Developments and Challenges in Olive Oil Supply and Demand: A Delphi Survey from Spain," Agriculture, MDPI, vol. 11(3), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    2. Lin, Tun & De Guzman, Franklin, 2007. "Tourism for pro-poor and sustainable growth: economic analysis of tourism projects," MPRA Paper 24994, University Library of Munich, Germany.
    3. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Litsiou, Konstantia & Polychronakis, Yiannis & Karami, Azhdar & Nikolopoulos, Konstantinos, 2022. "Relative performance of judgmental methods for forecasting the success of megaprojects," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1185-1196.
    5. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    6. Ngoy Kabemba S. & Chisumbe Sampa & Petere Gaida & Mwiya Balimu & Mwanaumo Erastus, 2023. "Factors Influencing Professional Indemnity Insurance Use in Construction Risk Management," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 11(1), pages 199-220, January.
    7. Frederico Fernandes Ávila & Regina C. Alvalá & Rodolfo M. Mendes & Diogo J. Amore, 2024. "Socio-geoenvironmental vulnerability index (SGeoVI) derived from hybrid modeling related to populations at-risk to landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8121-8151, July.
    8. van Asselt, E.D. & Meuwissen, M.P.M. & van Asseldonk, M.A.P.M. & Sterrenburg, P. & Mengelers, M.J.B. & van der Fels-Klerx, H.J., 2011. "Approach for a pro-active emerging risk system on biofuel by-products in feed," Food Policy, Elsevier, vol. 36(3), pages 421-429, June.
    9. Daniel Reißmann & Daniela Thrän & Alberto Bezama, 2018. "Key Development Factors of Hydrothermal Processes in Germany by 2030: A Fuzzy Logic Analysis," Energies, MDPI, vol. 11(12), pages 1-20, December.
    10. Myeonggil Choi & Changhan Lee, 2015. "Information Security Management as a Bridge in Cloud Systems from Private to Public Organizations," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    11. Odysseus Manoliadis & Ioannis Tsolas & Alexandra Nakou, 2006. "Sustainable construction and drivers of change in Greece: a Delphi study," Construction Management and Economics, Taylor & Francis Journals, vol. 24(2), pages 113-120.
    12. Grote, Matt & Waterson, Ben & Rudolph, Felix, 2021. "The impact of strategic transport policies on future urban traffic management systems," Transport Policy, Elsevier, vol. 110(C), pages 402-414.
    13. Haarhaus, Tim & Liening, Andreas, 2020. "Building dynamic capabilities to cope with environmental uncertainty: The role of strategic foresight," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    14. Julia A. Minson & Jennifer S. Mueller & Richard P. Larrick, 2018. "The Contingent Wisdom of Dyads: When Discussion Enhances vs. Undermines the Accuracy of Collaborative Judgments," Management Science, INFORMS, vol. 64(9), pages 4177-4192, September.
    15. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    16. Makkonen, Marika & Hujala, Teppo & Uusivuori, Jussi, 2016. "Policy experts' propensity to change their opinion along Delphi rounds," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 61-68.
    17. D F Andersen & J A M Vennix & G P Richardson & E A J A Rouwette, 2007. "Group model building: problem structuring, policy simulation and decision support," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(5), pages 691-694, May.
    18. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    19. Chun-Chieh Tseng & Jun-Yi Zeng & Min-Liang Hsieh & Chih-Hung Hsu, 2022. "Analysis of Innovation Drivers of New and Old Kinetic Energy Conversion Using a Hybrid Multiple-Criteria Decision-Making Model in the Post-COVID-19 Era: A Chinese Case," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    20. Yeh, Duen-Yian & Cheng, Ching-Hsue, 2015. "Recommendation system for popular tourist attractions in Taiwan using Delphi panel and repertory grid techniques," Tourism Management, Elsevier, vol. 46(C), pages 164-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:138:y:2019:i:c:p:254-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.