IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v132y2018icp191-208.html
   My bibliography  Save this article

Shaping factors in the emergence of technological innovations: The case of tidal kite technology

Author

Listed:
  • Andersson, Johnn
  • Hellsmark, Hans
  • Sandén, Björn A.

Abstract

The technological innovation systems (TIS) literature offers a detailed and dynamic understanding of factors that enable successful innovation. However, few studies analyze what determines where in space value chain elements are developed as a new technology is diffused on a large scale. The purpose of this paper is to show how the TIS approach can be used to identify and analyze factors that shape spatial trajectories of emerging technologies. It proposes an adapted analytical framework that expands the conventional focus on one-dimensional supporting and blocking factors, to shaping factors that incorporate the spatiality of innovation. The approach is illustrated by examining innovation in tidal kite technology. The analysis finds that a supportive local context in western Sweden during the infancy of tidal kite technology, together with the availability of competent engineers and business development professionals, promoted the formation of locally embedded knowledge and competence. This in turn created a spatial path dependency that made developments gravitate towards Sweden, although the lack of domestic markets has also increasingly driven an expansion of activity to other regions, in particular the UK. Moreover, the analysis shows that shaping, and not only stimulating, the growth of emerging TIS is an important challenge for regional policymakers, and highlights the need for international policy coordination. The paper concludes that analyzing shaping factors in the emergence of new TISs can yield important insights, some of which may be overlooked with a narrow analytical focus on supporting and blocking factors.

Suggested Citation

  • Andersson, Johnn & Hellsmark, Hans & Sandén, Björn A., 2018. "Shaping factors in the emergence of technological innovations: The case of tidal kite technology," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 191-208.
  • Handle: RePEc:eee:tefoso:v:132:y:2018:i:c:p:191-208
    DOI: 10.1016/j.techfore.2018.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517302627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.01.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weber, K. Matthias & Rohracher, Harald, 2012. "Legitimizing research, technology and innovation policies for transformative change," Research Policy, Elsevier, vol. 41(6), pages 1037-1047.
    2. Bernhard Truffer & Lars Coenen, 2012. "Environmental Innovation and Sustainability Transitions in Regional Studies," Regional Studies, Taylor & Francis Journals, vol. 46(1), pages 1-21, November.
    3. Oecd, 2017. "The links between global value chains and global innovation networks: An exploration," OECD Science, Technology and Industry Policy Papers 37, OECD Publishing.
    4. Cooke, Philip & Gomez Uranga, Mikel & Etxebarria, Goio, 1997. "Regional innovation systems: Institutional and organisational dimensions," Research Policy, Elsevier, vol. 26(4-5), pages 475-491, December.
    5. Negro, Simona O. & Hekkert, Marko P. & Smits, Ruud E., 2007. "Explaining the failure of the Dutch innovation system for biomass digestion--A functional analysis," Energy Policy, Elsevier, vol. 35(2), pages 925-938, February.
    6. Andersson, Johnn & Perez Vico, Eugenia & Hammar, Linus & Sandén, Björn A., 2017. "The critical role of informed political direction for advancing technology: The case of Swedish marine energy," Energy Policy, Elsevier, vol. 101(C), pages 52-64.
    7. Pegels, Anna & Lütkenhorst, Wilfried, 2014. "Is Germany׳s energy transition a case of successful green industrial policy? Contrasting wind and solar PV," Energy Policy, Elsevier, vol. 74(C), pages 522-534.
    8. Coenen, Lars & Benneworth, Paul & Truffer, Bernhard, 2012. "Toward a spatial perspective on sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 968-979.
    9. Reichardt, Kristin & Negro, Simona O. & Rogge, Karoline S. & Hekkert, Marko P., 2016. "Analyzing interdependencies between policy mixes and technological innovation systems: The case of offshore wind in Germany," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 11-21.
    10. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    11. Mariana Mazzucato & Gregor Semieniuk, 2017. "Public financing of innovation: new questions," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(1), pages 24-48.
    12. Meric S. Gertler, 2003. "Tacit knowledge and the economic geography of context, or The undefinable tacitness of being (there)," Journal of Economic Geography, Oxford University Press, vol. 3(1), pages 75-99, January.
    13. Grau, Thilo & Huo, Molin & Neuhoff, Karsten, 2012. "Survey of photovoltaic industry and policy in Germany and China," Energy Policy, Elsevier, vol. 51(C), pages 20-37.
    14. Jacobsson, Staffan & Johnson, Anna, 2000. "The diffusion of renewable energy technology: an analytical framework and key issues for research," Energy Policy, Elsevier, vol. 28(9), pages 625-640, July.
    15. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    16. Joas, Fabian & Pahle, Michael & Flachsland, Christian & Joas, Amani, 2016. "Which goals are driving the Energiewende? Making sense of the German Energy Transformation," Energy Policy, Elsevier, vol. 95(C), pages 42-51.
    17. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    18. Cai, Mattia & Cusumano, Niccolò & Lorenzoni, Arturo & Pontoni, Federico, 2017. "A comprehensive ex-post assessment of RES deployment in Italy: Jobs, value added and import leakages," Energy Policy, Elsevier, vol. 110(C), pages 234-245.
    19. Binz, Christian & Truffer, Bernhard & Coenen, Lars, 2014. "Why space matters in technological innovation systems—Mapping global knowledge dynamics of membrane bioreactor technology," Research Policy, Elsevier, vol. 43(1), pages 138-155.
    20. Malerba, Franco, 2002. "Sectoral systems of innovation and production," Research Policy, Elsevier, vol. 31(2), pages 247-264, February.
    21. William Lazonick & Mariana Mazzucato, 2013. "The risk-reward nexus in the innovation-inequality relationship: who takes the risks? Who gets the rewards ?," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 22(4), pages 1093-1128, August.
    22. Dieter Ernst, 2002. "Global production networks and the changing geography of innovation systems. Implications for developing countries," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 11(6), pages 497-523.
    23. Carlsson, Bo & Jacobsson, Staffan & Holmen, Magnus & Rickne, Annika, 2002. "Innovation systems: analytical and methodological issues," Research Policy, Elsevier, vol. 31(2), pages 233-245, February.
    24. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    25. Asheim, Bjorn T & Isaksen, Arne, 2002. "Regional Innovation Systems: The Integration of Local 'Sticky' and Global 'Ubiquitous' Knowledge," The Journal of Technology Transfer, Springer, vol. 27(1), pages 77-86, January.
    26. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    27. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    28. Binz, Christian & Tang, Tian & Huenteler, Joern, 2017. "Spatial lifecycles of cleantech industries – The global development history of solar photovoltaics," Energy Policy, Elsevier, vol. 101(C), pages 386-402.
    29. Bleda, Mercedes & del Río, Pablo, 2013. "The market failure and the systemic failure rationales in technological innovation systems," Research Policy, Elsevier, vol. 42(5), pages 1039-1052.
    30. Sandén, Björn A. & Hillman, Karl M., 2011. "A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden," Research Policy, Elsevier, vol. 40(3), pages 403-414, April.
    31. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
    32. Poole, Marshall Scott & Van de Ven, Andrew H. & Dooley, Kevin & Holmes, Michael E., 2000. "Organizational Change and Innovation Processes: Theory and Methods for Research," OUP Catalogue, Oxford University Press, number 9780195131987.
    33. Metcalfe, J S, 1994. "Evolutionary Economics and Technology Policy," Economic Journal, Royal Economic Society, vol. 104(425), pages 931-944, July.
    34. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    35. Binz, Christian & Truffer, Bernhard & Li, Li & Shi, Yajuan & Lu, Yonglong, 2012. "Conceptualizing leapfrogging with spatially coupled innovation systems: The case of onsite wastewater treatment in China," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 155-171.
    36. Ron Boschma, 2004. "Competitiveness of Regions from an Evolutionary Perspective," Regional Studies, Taylor & Francis Journals, vol. 38(9), pages 1001-1014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arfan, Muhammad & Hillman, Karl, 2024. "The geography of technological innovation systems - The case of forest-based biofuels in a Swedish region," Innovation and Green Development, Elsevier, vol. 3(2).
    2. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Hojckova, Kristina & Ahlborg, Helene & Morrison, Gregory M. & Sandén, Björn, 2020. "Entrepreneurial use of context for technological system creation and expansion: The case of blockchain-based peer-to-peer electricity trading," Research Policy, Elsevier, vol. 49(8).
    4. Rohe, Sebastian & Chlebna, Camilla, 2021. "A spatial perspective on the legitimacy of a technological innovation system: Regional differences in onshore wind energy," Energy Policy, Elsevier, vol. 151(C).
    5. João Reis & Paula Santo & Nuno Melão, 2020. "Artificial Intelligence Research and Its Contributions to the European Union’s Political Governance: Comparative Study between Member States," Social Sciences, MDPI, vol. 9(11), pages 1-17, November.
    6. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    7. Hansmeier Hendrik & Kroll Henning, 2024. "The geography of eco-innovations and sustainability transitions: A systematic comparison," ZFW – Advances in Economic Geography, De Gruyter, vol. 68(2), pages 125-143.
    8. Cai, Ying & Lin, Jun & Zhang, Ruxin, 2023. "When and how to implement design thinking in the innovation process: A longitudinal case study," Technovation, Elsevier, vol. 126(C).
    9. Andersson, Johnn & Hellsmark, Hans & Sandén, Björn, 2021. "Photovoltaics in Sweden – Success or failure?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Sebastian Rohe & Jannika Mattes, 2021. "What about the regional level? Regional configurations of Technological Innovation Systems," PEGIS geo-disc-2021_01, Institute for Economic Geography and GIScience, Department of Socioeconomics, Vienna University of Economics and Business.
    11. Rohe, Sebastian & Chlebna, Camilla, 2022. "The evolving role of networking organizations in advanced sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    12. Galvin, Peter & Burton, Nicholas & Nyuur, Richard, 2020. "Leveraging inter-industry spillovers through DIY laboratories: Entrepreneurship and innovation in the global bicycle industry," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    13. Le, Duc Nha & Le Tuan, Loc & Dang Tuan, Minh Nguyen, 2019. "Smart-building management system: An Internet-of-Things (IoT) application business model in Vietnam," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 22-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahesh, Mehran Badin & Tabarsa, Gholamali & Zandieh, Mostafa & Hamidizadeh, Mohammadreza, 2020. "Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis," Technology in Society, Elsevier, vol. 63(C).
    2. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    3. Hojckova, Kristina & Ahlborg, Helene & Morrison, Gregory M. & Sandén, Björn, 2020. "Entrepreneurial use of context for technological system creation and expansion: The case of blockchain-based peer-to-peer electricity trading," Research Policy, Elsevier, vol. 49(8).
    4. Palm, Alvar, 2022. "Innovation systems for technology diffusion: An analytical framework and two case studies," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    5. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    6. Bleda, Mercedes & del Río, Pablo, 2013. "The market failure and the systemic failure rationales in technological innovation systems," Research Policy, Elsevier, vol. 42(5), pages 1039-1052.
    7. Stephan, Annegret & Schmidt, Tobias S. & Bening, Catharina R. & Hoffmann, Volker H., 2017. "The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan," Research Policy, Elsevier, vol. 46(4), pages 709-723.
    8. Haley, Brendan, 2018. "Integrating structural tensions into technological innovation systems analysis: Application to the case of transmission interconnections and renewable electricity in Nova Scotia, Canada," Research Policy, Elsevier, vol. 47(6), pages 1147-1160.
    9. De Oliveira, Luiz Gustavo Silva & Negro, Simona O., 2019. "Contextual structures and interaction dynamics in the Brazilian Biogas Innovation System," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 462-481.
    10. Andersson, Johnn & Hellsmark, Hans & Sandén, Björn, 2021. "Photovoltaics in Sweden – Success or failure?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    12. Zolfagharian, Mohammadreza & Walrave, Bob & Raven, Rob & Romme, A. Georges L., 2019. "Studying transitions: Past, present, and future," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    13. Mohammad Esmailzadeh & Siamak Noori & Alireza Aliahmadi & Hamidreza Nouralizadeh & Marcel Bogers, 2020. "A Functional Analysis of Technological Innovation Systems in Developing Countries: An Evaluation of Iran’s Photovoltaic Innovation System," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    14. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    15. Gosens, Jorrit & Lu, Yonglong & Coenen , Lars, 2013. "Clean-tech Innovation in Emerging Economies: Transnational Dimensions in Technological Innovation System Formation," Papers in Innovation Studies 2013/10, Lund University, CIRCLE - Centre for Innovation Research.
    16. Malhotra, Abhishek & Schmidt, Tobias S. & Huenteler, Joern, 2019. "The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 464-487.
    17. Adela Conchado & Pedro Linares, 2017. "A New ‘Cut’ on Technological Innovation Aiming for Sustainability in a Globalized World," SPRU Working Paper Series 2017-25, SPRU - Science Policy Research Unit, University of Sussex Business School.
    18. Souzanchi Kashani, Ebrahim & Roshani, Saeed, 2019. "Evolution of innovation system literature: Intellectual bases and emerging trends," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 68-80.
    19. Bajmócy, Zoltán & Vas, Zsófia, 2012. "Az innovációs rendszerek 25 éve. Szakirodalmi áttekintés evolúciós közgazdaságtani megközelítésben [25 years of innovation systems. A literature review from the angle of evolutionary economics]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1233-1256.
    20. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:132:y:2018:i:c:p:191-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.