IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v102y2016icp297-308.html
   My bibliography  Save this article

Wave transition in household energy use

Author

Listed:
  • Zhang, Rui
  • Wei, Taoyuan
  • Sun, Jie
  • Shi, Qinghua

Abstract

The energy ladder model and energy stacking model have been proposed in the literature to describe the relations between income growth and transition of energy consumed by households. Both models are largely descriptive and provide limited guidelines for quantitative verification. By contrast, the logistic substitution model has been adopted much earlier to depict the long-run energy transition of a society over time. This model assumes that substitute technologies in energy sources are available in the energy market. In the present paper, we argue that household energy transition over income can follow the same pattern as energy dynamics over time in the logistic substation model. Hence, we construct a new model, energy wave transition model, by adapting the logistic substitution model to describe household energy transition both over time and over income. The new model not only captures the features presented in the energy ladder and stacking models, but also provides methods for quantitative verification. We illustrate the new model using the energy consumption pattern of Chinese households as an example.

Suggested Citation

  • Zhang, Rui & Wei, Taoyuan & Sun, Jie & Shi, Qinghua, 2016. "Wave transition in household energy use," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 297-308.
  • Handle: RePEc:eee:tefoso:v:102:y:2016:i:c:p:297-308
    DOI: 10.1016/j.techfore.2015.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162515002619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2015.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Démurger, Sylvie & Fournier, Martin, 2011. "Poverty and firewood consumption: A case study of rural households in northern China," China Economic Review, Elsevier, vol. 22(4), pages 512-523.
    2. Farsi, Mehdi & Filippini, Massimo & Pachauri, Shonali, 2007. "Fuel choices in urban Indian households," Environment and Development Economics, Cambridge University Press, vol. 12(6), pages 757-774, December.
    3. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    4. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    5. Leiwen Jiang & Brian C. O'Neill, 2004. "The energy transition in rural China," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 21(1/2), pages 2-26.
    6. Sheinbaum, C. & Martínez, M. & Rodríguez, L., 1996. "Trends and prospects in Mexican residential energy use," Energy, Elsevier, vol. 21(6), pages 493-504.
    7. Kaika, Dimitra & Zervas, Efthimios, 2013. "The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case," Energy Policy, Elsevier, vol. 62(C), pages 1392-1402.
    8. Hiemstra-van der Horst, Greg & Hovorka, Alice J., 2008. "Reassessing the "energy ladder": Household energy use in Maun, Botswana," Energy Policy, Elsevier, vol. 36(9), pages 3333-3344, September.
    9. Richmond, Amy K. & Kaufmann, Robert K., 2006. "Is there a turning point in the relationship between income and energy use and/or carbon emissions?," Ecological Economics, Elsevier, vol. 56(2), pages 176-189, February.
    10. Leach, Gerald, 1992. "The energy transition," Energy Policy, Elsevier, vol. 20(2), pages 116-123, February.
    11. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    12. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    13. Luzzati, T. & Orsini, M., 2009. "Investigating the energy-environmental Kuznets curve," Energy, Elsevier, vol. 34(3), pages 291-300.
    14. Modis, Theodore, 2007. "Strengths and weaknesses of S-curves," OSF Preprints r5zk7, Center for Open Science.
    15. Zhang, Rui & Wei, Taoyuan & Glomsrød, Solveig & Shi, Qinghua, 2014. "Bioenergy consumption in rural China: Evidence from a survey in three provinces," Energy Policy, Elsevier, vol. 75(C), pages 136-145.
    16. Gundimeda, Haripriya & Kohlin, Gunnar, 2008. "Fuel demand elasticities for energy and environmental policies: Indian sample survey evidence," Energy Economics, Elsevier, vol. 30(2), pages 517-546, March.
    17. Hu, Zhiyuan & Pu, Gengqiang & Fang, Fang & Wang, Chengtao, 2004. "Economics, environment, and energy life cycle assessment of automobiles fueled by bio-ethanol blends in China," Renewable Energy, Elsevier, vol. 29(14), pages 2183-2192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wong, Chan-Yuan & Keng, Zi-Xiang & Mohamad, Zeeda Fatimah & Azizan, Suzana Ariff, 2016. "Patterns of technological accumulation: The comparative advantage and relative impact of Asian emerging economies in low carbon energy technological systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 977-987.
    2. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    3. Tian, Zhihua & Tian, Yanfang & Shen, Liangping & Shao, Shuai, 2021. "The health effect of household cooking fuel choice in China: An urban-rural gap perspective," Technological Forecasting and Social Change, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Rui & Wei, Taoyuan & Glomsrød, Solveig & Shi, Qinghua, 2014. "Bioenergy consumption in rural China: Evidence from a survey in three provinces," Energy Policy, Elsevier, vol. 75(C), pages 136-145.
    2. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    3. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    4. Barra, Cristian & Zotti, Roberto, 2016. "Investigating the impact of national income on environmental pollution. International evidence," MPRA Paper 74149, University Library of Munich, Germany.
    5. Christophe Muller & Huijie Yan, 2018. "Household Fuel Use in Rural China," AMSE Working Papers 1808, Aix-Marseille School of Economics, France.
    6. Pablo-Romero, M.P. & Cruz, L. & Barata, E., 2017. "Testing the transport energy-environmental Kuznets curve hypothesis in the EU27 countries," Energy Economics, Elsevier, vol. 62(C), pages 257-269.
    7. Gosens, Jorrit & Lu, Yonglong & He, Guizhen & Bluemling, Bettina & Beckers, Theo A.M., 2013. "Sustainability effects of household-scale biogas in rural China," Energy Policy, Elsevier, vol. 54(C), pages 273-287.
    8. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    9. Kowsari, Reza & Zerriffi, Hisham, 2011. "Three dimensional energy profile:," Energy Policy, Elsevier, vol. 39(12), pages 7505-7517.
    10. Pablo-Romero, María del P. & De Jesús, Josué, 2016. "Economic growth and energy consumption: The Energy-Environmental Kuznets Curve for Latin America and the Caribbean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1343-1350.
    11. Guta, Dawit Diriba, 2014. "Effect of fuelwood scarcity and socio-economic factors on household bio-based energy use and energy substitution in rural Ethiopia," Energy Policy, Elsevier, vol. 75(C), pages 217-227.
    12. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    13. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    14. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.
    15. Jingchao, Zhang & Kotani, Koji, 2012. "The determinants of household energy demand in rural Beijing: Can environmentally friendly technologies be effective?," Energy Economics, Elsevier, vol. 34(2), pages 381-388.
    16. Myo Myo Htike & Anil Shrestha & Makoto Kakinaka, 2022. "Investigating whether the environmental Kuznets curve hypothesis holds for sectoral CO2 emissions: evidence from developed and developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12712-12739, November.
    17. Ekholm, Tommi & Krey, Volker & Pachauri, Shonali & Riahi, Keywan, 2010. "Determinants of household energy consumption in India," Energy Policy, Elsevier, vol. 38(10), pages 5696-5707, October.
    18. Harrington, Elise & Athavankar, Ameya & Hsu, David, 2020. "Variation in rural household energy transitions for basic lighting in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Rodríguez, Miguel & Pena-Boquete, Yolanda & Pardo-Fernández, Juan Carlos, 2016. "Revisiting Environmental Kuznets Curves through the energy price lens," Energy Policy, Elsevier, vol. 95(C), pages 32-41.
    20. Sugiawan, Yogi & Managi, Shunsuke, 2016. "The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy," Energy Policy, Elsevier, vol. 98(C), pages 187-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:102:y:2016:i:c:p:297-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.