IDEAS home Printed from https://ideas.repec.org/a/eee/techno/v70-71y2018ip20-32.html
   My bibliography  Save this article

Local niches and firm responses in sustainability transitions: The case of low-emission vehicles in China

Author

Listed:
  • Bohnsack, René

Abstract

The Chinese government has implemented a comprehensive strategy to push low-emission vehicles (LEVs). Local municipalities have played an important role in this transition. Programs such as the “Ten Cities Thousand Vehicles” (TCTV) program created protection mechanisms in local niches for the development of LEVs in which public and private actors have been able to experiment without market pressures. However, often the setup of local niches has favoured local companies which led to incompatibility across provinces and barriers to diffusion. This article aims to explore the dynamics in the local niche and how the niche has been shaped by local protection and firm responses. Heeding the call for a better conceptualization of the spatial dimension in sustainability transitions, we draw on the recent second generation, multi-scalar multi-level perspective (MLP) and conceptualize the local niche. Based on our empirical results we find four ideal type local niches – the open niche, the technology shielding niche, the market shielding niche and the closed niche – and distill respective firm responses. This has important implications for policy-makers and managers in China and for industries in sustainability transition in general.

Suggested Citation

  • Bohnsack, René, 2018. "Local niches and firm responses in sustainability transitions: The case of low-emission vehicles in China," Technovation, Elsevier, vol. 70, pages 20-32.
  • Handle: RePEc:eee:techno:v:70-71:y:2018:i::p:20-32
    DOI: 10.1016/j.technovation.2018.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0166497218301159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.technovation.2018.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Adrian & Raven, Rob, 2012. "What is protective space? Reconsidering niches in transitions to sustainability," Research Policy, Elsevier, vol. 41(6), pages 1025-1036.
    2. Bento, Nuno & Fontes, Margarida, 2015. "The construction of a new technological innovation system in a follower country: Wind energy in Portugal," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 197-210.
    3. Bohnsack, René & Pinkse, Jonatan & Kolk, Ans, 2014. "Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles," Research Policy, Elsevier, vol. 43(2), pages 284-300.
    4. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    5. Coenen, Lars & Benneworth, Paul & Truffer, Bernhard, 2012. "Toward a spatial perspective on sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 968-979.
    6. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    7. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    8. Bai, Chong-En & Du, Yingjuan & Tao, Zhigang & Tong, Sarah Y., 2004. "Local protectionism and regional specialization: evidence from China's industries," Journal of International Economics, Elsevier, vol. 63(2), pages 397-417, July.
    9. Hong, Jin & Feng, Bing & Wu, Yanrui & Wang, Liangbing, 2016. "Do government grants promote innovation efficiency in China's high-tech industries?," Technovation, Elsevier, vol. 57, pages 4-13.
    10. Huiming Gong & Michael Wang & Hewu Wang, 2013. "New energy vehicles in China: policies, demonstration, and progress," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(2), pages 207-228, February.
    11. Helms, Thorsten & Loock, Moritz & Bohnsack, René, 2016. "Timing-based business models for flexibility creation in the electric power sector," Energy Policy, Elsevier, vol. 92(C), pages 348-358.
    12. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    13. Rogge, Karoline S. & Reichardt, Kristin, 2016. "Policy mixes for sustainability transitions: An extended concept and framework for analysis," Research Policy, Elsevier, vol. 45(8), pages 1620-1635.
    14. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    15. Mattes, Jannika & Huber, Andreas & Koehrsen, Jens, 2015. "Energy transitions in small-scale regions – What we can learn from a regional innovation systems perspective," Energy Policy, Elsevier, vol. 78(C), pages 255-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roger-Monzó, Vanessa & Castelló-Sirvent, Fernando & Teixidó, Eduard Farran, 2023. "Sustainability, fuzzy-set and the hall of fame: Evolving research agenda," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    2. Denise P. Lozano Lazo & Alexandros Gasparatos, 2019. "Sustainability Transitions in the Municipal Solid Waste Management Systems of Bolivian Cities: Evidence from La Paz and Santa Cruz de la Sierra," Sustainability, MDPI, vol. 11(17), pages 1-34, August.
    3. Wu, Zhanglan & Shao, Qinglong & Su, Yantao & Zhang, Dan, 2021. "A socio-technical transition path for new energy vehicles in China: A multi-level perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    4. Huang, Youlin & Qian, Lixian & Soopramanien, Didier & Tyfield, David, 2021. "Buy, lease, or share? Consumer preferences for innovative business models in the market for electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    5. de Paulo, Alex Fabianne & Nunes, Breno & Porto, Geciane, 2020. "Emerging green technologies for vehicle propulsion systems," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    6. Qian, Lixian & Huang, Youlin & Tyfield, David & Soopramanien, Didier, 2023. "Dynamic consumer preferences for electric vehicles in China: A longitudinal approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    7. Enderwick, Peter & Buckley, Peter J., 2021. "The role of springboarding in economic catch-up: A theoretical perspective," Journal of International Management, Elsevier, vol. 27(3).
    8. Ling Ding & Jinxi Wu & Ziyou Ma & Jialu Mai, 2022. "Regional Niche and Spatial Distribution of Foreign Investment in China from 2012 to 2021," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    9. Alberto Romero-Ania & Lourdes Rivero Gutiérrez & María Auxiliadora De Vicente Oliva, 2021. "Multiple Criteria Decision Analysis of Sustainable Urban Public Transport Systems," Mathematics, MDPI, vol. 9(16), pages 1-30, August.
    10. Lourdes Rivero Gutiérrez & María Auxiliadora De Vicente Oliva & Alberto Romero-Ania, 2021. "Managing Sustainable Urban Public Transport Systems: An AHP Multicriteria Decision Model," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    11. Leyva-de la Hiz, Dante I. & Bolívar-Ramos, María Teresa, 2022. "The inverted U relationship between green innovative activities and firms’ market-based performance: The impact of firm age," Technovation, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).
    2. Strambach, Simone & Pflitsch, Gesa, 2020. "Transition topology: Capturing institutional dynamics in regional development paths to sustainability," Research Policy, Elsevier, vol. 49(7).
    3. Jonas Heiberg & Christian Binz & Bernhard Truffer, 2020. "Assessing transitions through socio-technical network analysis – a methodological framework and a case study from the water sector," Papers in Evolutionary Economic Geography (PEEG) 2035, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2020.
    4. van Geenhuizen, Marina & Ye, Qing, 2014. "Responsible innovators: open networks on the way to sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 28-40.
    5. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    6. Fuenfschilling, Lea & Binz, Christian, 2018. "Global socio-technical regimes," Research Policy, Elsevier, vol. 47(4), pages 735-749.
    7. Khatoon, Tohmina & Kivimaa, Paula & Brisbois, Marie Claire & Saadi, Shah Abdul, 2024. "A global south perspective on the interplay between innovation policy mix and technological innovation systems dynamics: The case of Dhaka City's road passenger transport system," Journal of Transport Geography, Elsevier, vol. 118(C).
    8. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.
    9. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    10. Fuenfschilling, Lea & Truffer, Bernhard, 2014. "The structuration of socio-technical regimes—Conceptual foundations from institutional theory," Research Policy, Elsevier, vol. 43(4), pages 772-791.
    11. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    12. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    13. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    14. Weber, K. Matthias & Rohracher, Harald, 2012. "Legitimizing research, technology and innovation policies for transformative change," Research Policy, Elsevier, vol. 41(6), pages 1037-1047.
    15. Raven, Rob & Walrave, Bob, 2020. "Overcoming transformational failures through policy mixes in the dynamics of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    16. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    17. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    18. Francisco Chicombo, Adélia Filosa & Musango, Josephine Kaviti, 2022. "Towards a theoretical framework for gendered energy transition at the urban household level: A case of Mozambique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Manning, Stephan & Reinecke, Juliane, 2016. "A modular governance architecture in-the-making: How transnational standard-setters govern sustainability transitions," Research Policy, Elsevier, vol. 45(3), pages 618-633.
    20. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:techno:v:70-71:y:2018:i::p:20-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/01664972 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.