Some Stein-type inequalities for multivariate elliptical distributions and applications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2014.11.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Landsman, Zinoviy, 2006. "On the generalization of Stein's Lemma for elliptical class of distributions," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1012-1016, May.
- Cacoullos, T. & Papathanasiou, V., 1989. "Characterizations of distributions by variance bounds," Statistics & Probability Letters, Elsevier, vol. 7(5), pages 351-356, April.
- Christophe Ley & Yvik Swan, 2013. "Parametric Stein Operators and Variance Bounds," Working Papers ECARES ECARES 2013-28, ULB -- Universite Libre de Bruxelles.
- Vandendorpe, Antoine & Ho, Ngoc-Diep & Vanduffel, Steven & Van Dooren, Paul, 2008. "On the parameterization of the CreditRisk + model for estimating credit portfolio risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 736-745, April.
- Landsman, Zinoviy & Neslehová, Johanna, 2008. "Stein's Lemma for elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 912-927, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Moawia Alghalith & Wing-Keung Wong, 2020. "Extension of Stein's Lemmas to General Functions and Distributions," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(4), pages 77-88, December.
- Nitis Mukhopadhyay, 2021. "On Rereading Stein’s Lemma: Its Intrinsic Connection with Cramér-Rao Identity and Some New Identities," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 355-367, March.
- Shushi, Tomer, 2018. "Stein’s lemma for truncated elliptical random vectors," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 297-303.
- Moawia Alghalith & Wing-Keung Wong, 2020.
"Extension of Stein's Lemmas to General Functions and Distributions,"
Advances in Decision Sciences, Asia University, Taiwan, vol. 24(4), pages 77-88, December.
- Moawia Alghalith & Wing-Keung Wong, 2020. "Extension of Stein's Lemmas to General Functions and Distributions," International Association of Decision Sciences, Asia University, Taiwan, vol. 24(4), pages 77-88, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
- C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
- Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
- Christophe Ley & Gesine Reinert & Yvik Swan, 2014. "Approximate Computation of Expectations: the Canonical Stein Operator," Working Papers ECARES ECARES 2014-36, ULB -- Universite Libre de Bruxelles.
- Adcock, C.J., 2014. "Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution," European Journal of Operational Research, Elsevier, vol. 234(2), pages 392-401.
- Mikami, Toshio, 1998. "Equivalent conditions on the central limit theorem for a sequence of probability measures on R," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 237-242, March.
- Liu, Jing, 2018. "LLN-type approximations for large portfolio losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 71-77.
- Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
- Kumar Kattumannil, Sudheesh, 2009. "On Stein's identity and its applications," Statistics & Probability Letters, Elsevier, vol. 79(12), pages 1444-1449, June.
- Papadatos, N. & Papathanasiou, V., 1996. "A generalization of variance bounds," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 191-194, June.
- Mikami, Toshio, 2004. "Covariance kernel and the central limit theorem in the total variation distance," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 257-268, August.
- Bessler, Wolfgang & Taushanov, Georgi & Wolff, Dominik, 2021. "Optimal asset allocation strategies for international equity portfolios: A comparison of country versus industry optimization," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
- Vanduffel, Steven & Yao, Jing, 2017. "A stein type lemma for the multivariate generalized hyperbolic distribution," European Journal of Operational Research, Elsevier, vol. 261(2), pages 606-612.
- Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
- Arras, Benjamin & Azmoodeh, Ehsan & Poly, Guillaume & Swan, Yvik, 2019. "A bound on the Wasserstein-2 distance between linear combinations of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2341-2375.
- Jacopo Giacomelli & Luca Passalacqua, 2021. "Unsustainability Risk of Bid Bonds in Public Tenders," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
- Jacopo Giacomelli & Luca Passalacqua, 2021. "Calibrating the CreditRisk + Model at Different Time Scales and in Presence of Temporal Autocorrelation †," Mathematics, MDPI, vol. 9(14), pages 1-30, July.
- Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Jing Yao, 2017. "How robust is the value-at-risk of credit risk portfolios?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 507-534, May.
- Giorgos Afendras & Vassilis Papathanasiou, 2014. "A note on a variance bound for the multinomial and the negative multinomial distribution," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(3), pages 179-183, April.
- Wei, Li & Yuan, Zhongyi, 2016. "The loss given default of a low-default portfolio with weak contagion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 113-123.
More about this item
Keywords
Stein’s lemma; Stein-type inequality; Multivariate elliptical distribution; Inadmissibility; Chernoff-type inequality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:97:y:2015:i:c:p:54-62. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.